


• Graph-based protocols are an alternative to two-phase 

locking 

• Impose a partial ordering  on the set D = {d1, d2 ,..., dh} 

of all data items. 

• If di  dj  then any transaction accessing both di and dj must 

access di before accessing dj. 

• Implies that the set D may now be viewed as a directed acyclic 

graph, called a database graph. 

• The tree-protocol is a simple kind of graph protocol.  



• Only exclusive locks are allowed. 

• The first lock by Ti may be on any data item. 

Subsequently, a data Q can be locked by Ti only if the 

parent of Q is currently locked by Ti. 

• Data items may be unlocked at any time. 



• The tree protocol ensures conflict serializability as well as 
freedom from deadlock. 

• Unlocking may occur earlier in the tree-locking protocol 
than in the two-phase locking protocol. 

• shorter waiting times, and increase in concurrency 

• protocol is deadlock-free, no rollbacks are required 

• the abort of a transaction can still lead to cascading rollbacks.  

     (this correction  has to be made in the book also.) 

• However,  in the tree-locking protocol, a transaction may 
have to lock data items that it does not access. 

•  increased locking overhead, and additional waiting time 

• potential decrease in concurrency 

• Schedules not possible under two-phase locking are 
possible under tree protocol, and vice versa. 



• Each transaction is issued a timestamp when it enters the system. If an old 

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp 

TS(Tj) such that TS(Ti) <TS(Tj).  

• The protocol manages concurrent execution such that the time-stamps determine 

the serializability order. 

• In order to assure such behavior, the protocol maintains for each data Q two 

timestamp values: 

• W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) 

successfully. 

• R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) 

successfully. 



• The timestamp ordering protocol ensures that any 
conflicting  read and write operations are executed in 
timestamp order. 

• Suppose a transaction Ti issues a read(Q) 

  1.  If TS(Ti)  W-timestamp(Q), then Ti needs to read a 
value of Q        

       that was already overwritten. Hence, the read 
operation is         

       rejected, and Ti  is rolled back. 

  2.  If TS(Ti) W-timestamp(Q), then the read operation 
is  

       executed, and R-timestamp(Q) is set to the 
maximum of R- 

       timestamp(Q) and TS(Ti). 



• Suppose that transaction Ti issues write(Q). 

• If TS(Ti) < R-timestamp(Q), then the value of Q that Ti 
is producing was needed previously, and the system 
assumed that that value would never be produced. 
Hence, the write operation is rejected, and Ti is rolled 
back. 

• If TS(Ti) < W-timestamp(Q), then Ti is attempting to 
write an obsolete value of Q. Hence, this write 
operation is rejected, and Ti is rolled back. 

• Otherwise, the  write operation is executed, and W-
timestamp(Q) is set to TS(Ti). 



A partial schedule for several data items for transactions 

with 
timestamps 1, 2, 3, 4, 5 

    
T1 T2 T3 T4 T5 

read(Y) 
read(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
read(X)  
abort   

read(X)  
write(Z)  
abort   

write(Y)  

write(Z)   



• The timestamp-ordering protocol guarantees 

serializability since all the arcs in the precedence 

graph are of the form: 

     

 

 

 

 

    Thus, there will be no cycles in the precedence graph 

• Timestamp protocol ensures freedom from deadlock 
as no transaction ever waits.   

• But the schedule may not be cascade-free, and may  
not even be recoverable. 

transaction 

with smaller 

timestamp 

transaction 

with larger 

timestamp  



• Problem with timestamp-ordering protocol: 

• Suppose Ti aborts, but Tj has read a data item written by  Ti 

• Then Tj must abort; if Tj had been allowed to commit earlier, the 

schedule is not recoverable. 

• Further, any transaction that has read a data item written by Tj 

must abort 

• This can lead to cascading rollback --- that is, a chain of rollbacks  

•  Solution: 

• A transaction is structured such that its writes are all performed at 

the end of its processing 

• All writes of a transaction form an atomic action; no transaction 

may execute while a transaction is being written 

• A transaction that aborts is restarted with a new timestamp 



• Modified version of the timestamp-ordering protocol in which 
obsolete  write operations may be ignored under certain 
circumstances. 

• When Ti attempts to write data item Q, if TS(Ti) < W-

timestamp(Q), then Ti is attempting to write an obsolete value 

of {Q}. Hence, rather than rolling back Ti as the timestamp 

ordering protocol would have done, this {write} operation can 

be ignored. 

• Otherwise this protocol is the same as the timestamp ordering 
protocol. 

• Thomas' Write Rule allows greater potential concurrency. 

Unlike previous protocols, it allows some view-serializable 

schedules that are not conflict-serializable. 



• Execution of transaction Ti is done in three phases. 

  1.  Read and execution phase: Transaction Ti writes only to          
       temporary local variables 

  2.  Validation phase: Transaction Ti performs a ``validation test''  
        to determine if local variables can be written without violating          
        serializability. 

  3.  Write phase: If Ti is validated, the updates are applied to the  
   database; otherwise, Ti is rolled back. 

• The three phases of concurrently executing transactions can be    interleaved, 

but each transaction must go through the three phases in that order. 

• Also called as optimistic concurrency control since transaction executes 

fully in the hope that all will go well during validation 



• Each transaction Ti has 3 timestamps 

 Start(Ti) : the time when Ti started its execution 

 Validation(Ti): the time when Ti entered its validation 
phase 

  Finish(Ti) : the time when Ti finished its write phase 

• Serializability order is determined by timestamp given at 
validation time,  to increase concurrency. Thus TS(Ti) is 
given the value of Validation(Ti). 

• This protocol is useful and gives greater degree of 
concurrency if probability of conflicts is low. That is because 
the serializability order is not pre-decided and relatively less 
transactions will have to be rolled back. 



• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds: 

• finish(Ti) < start(Tj)  

• start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not 

intersect with the set of data items read by Tj.   

     then validation succeeds and Tj can be committed.  Otherwise, validation 

fails and Tj is aborted. 

• Justification:  Either first condition is satisfied, and there is no overlapped 

execution, or second condition is satisfied and 

  1.  the writes of Tj do not affect reads of Ti since they occur after Ti  
       has finished its reads. 

  2.  the writes of Ti do not affect reads of Tj since Tj does not read   
      any item written by Ti. 



• Example of schedule produced using validation 
T14 T15 

read(B) 
read(B) 

B:- B-50 

read(A) 

A:- A+50 
read(A) 

(validate) 

display (A+B) 
(validate) 

write (B) 

write (A) 



• Allow  data items to be of various sizes and define a 

hierarchy of data granularities, where the small 

granularities are nested within larger ones 

• Can be represented graphically as a tree (but don't 

confuse with tree-locking protocol) 

• When a transaction locks a node in the tree explicitly, it 

implicitly locks all the node's descendents in the same 

mode. 

• Granularity of locking (level in tree where locking is 

done): 

• fine granularity (lower in tree): high concurrency, high locking 

overhead 

• coarse granularity  (higher in tree): low locking overhead, low 

concurrency 



 

 

 

 

 

 

 

 

 

   The highest level in the example hierarchy is the entire 

database. 

   The levels below are of type area, file and record in that 

order. 



• In addition to S and X lock modes, there are three 

additional lock modes with multiple granularity: 

• intention-shared (IS): indicates explicit locking at a lower level of 

the tree but only with shared locks. 

• intention-exclusive (IX): indicates explicit locking at a lower level 

with exclusive or shared locks 

• shared and intention-exclusive (SIX): the subtree rooted by that 

node is locked explicitly in shared mode and explicit locking is 

being done at a lower level with exclusive-mode locks. 

• intention locks allow a higher level node to be locked in S 

or X mode without having to check all descendent nodes. 



• The compatibility matrix for all lock modes is:  
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• Transaction Ti can lock a node Q, using the following rules: 

  1. The lock compatibility matrix must be observed. 

  2. The root of the tree must be locked first, and may be locked in  

       any mode. 

  3. A node Q can be locked by Ti in S or IS mode only if the parent  
      of Q is currently locked by Ti in either IX or IS                           
      mode. 

  4. A node Q can be locked by Ti in X, SIX, or IX mode only if the  
      parent of Q is currently locked by Ti in either IX     
      or SIX mode. 

  5. Ti can lock a node only if it has not previously unlocked any node  

      (that is, Ti is two-phase). 

  6. Ti can unlock a node Q only if none of the children of Q are  
      currently locked by Ti. 

• Observe that locks are acquired in root-to-leaf order,  

whereas they are released in leaf-to-root order. 


