Recovery Management

IntrOd lr/__:- 4

» Failure Clz

» Storage St

» Recovery a

» Log-Based |

» Shadow Pagi

» Recovery With Cc

» Buffer Manageme

» Failure with Loss of Nor

» Advanced Recovery Technique
» ARIES Recovery Algorithm
» Remote Backup Systems

\ ,\\\\ L
o\ R
A\ \
\\ \
B\ W\
\) \

Failure Class

» Transactio

- Logical errc
internal errc

- System error
active transac
» System crash:
software failure

- Fail-stop assumB
assumed to not be cor

Database systems have
corruption of disk data

» Disk failure: a head crash or similar disk failure
destroys all or part of disk storage
- Destruction is assumed to be detectable: disk drives use

checksums to detect failures

Recovery Algorithms

» Recovery algorithms are techniques to ensure
database consistency and transaction
atomicity and durability despite failures
> Focus of this chapter

» Recovery algorithms have two parts

1. Actions taken during normal transaction
processing to ensure enough information exists to
recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability

» Volatile s
- does not
- examples:

» Nonvolatile

© survives systel
- examples: disk,
non-vola
» Stable storage:
- a mythical form of storage that survives all failures

- approximated by maintaining multiple copies on
distinct nonvolatile media

\

Stable-Stora

Maintain multig
© copies can b
flooding.
Failure during d
transfer can res
- Successful comp
- Partial failure: dest
- Total failure: destinat

Protecting storage medic

solution): n
- Execute output operation as follo
Write the information onto the first p

When the first write successfully completes, write the same information
onto the second physical block.

The output is completed only after the second write successfully
completes.

(Ct.)

Protecting S
transfer (cc
Copies of ¢
output ope
1. First find i

Expensi
block.

Better solu

Record in-
volatile RA

Use this inforn
inconsistent, and

Used in hardware RAID
2. If either copy of an inconsi i ave
an error (bad checksum), overwrite it by the other copy. If
both have no error, but are different, overwrite the second
block by the first block.

Data Access
Physical bloc

Buffer block
main memo

Block move
initiated thro
- input(B) trans
- output(B) trans

the appropriate
Each transaction
local copies of all d:
it are kept.

- T/s local copy of a data

We assume, for simplicity, t
and is stored inside, a single block.

Data Access

» Transaction
blocks and i
operations :
- read(X) assic

- write(X) assig
buffer block.

- both these com
instruction before
resides is not alreac

» Transactions

- Perform read(X) while acces
- All subsequent accesses are to '
- After last access, transaction executes

» output(B,) need not immediately follow write(X). System
can perform the output operation when it deems

e

Work area

memory

Recovery ant ALe

» Modifying
that the t
the databe

» Consider t
from accou
to perform a

by 7;0r none at

» Several output ope
for 7; (to output A anc
occur after one of these modifications have

been made but before all of them are
made.

Recovery and Atomicity (Cont.)

» To ensure atomicity despite failures, we first
output information describing the
modifications to stable storage without
modifying the database itself.

» We study two approaches:

- log-based recovery, and
- shadow-paging

» We assume (initially) that transactions run

serially, that is, one after the other.

LO ’S:t |

A log i¥°kept or

- The log is a se
activities on t

When transacti
<T,- start

Before T, execut

1
where V; is the
written to X.

- Log record note
value V; before the

When 7; finishes it las

written.

We assume for now that log rec
storage (that is, they are not buf
Two approaches using logs

- Deferred database modification

- Immediate database modification

Deferred

The deferrec
modification
partial comn

Assume that

Transaction st

A write(X) oper:

being written, wt

- Note: old value is not

The write is not perfa

deferred. ‘

}Nhen 7 partially commits, .

0g

Finally, the log records are read and used to actually
execute the previously deferred writes.

Deferred Databas

, [(s;m tea

heed sto
start> and

Redoing at
of all data
the new vall

Crashes can
> the transactio
- while recovery @

example transact
before 7)):

7, read (A)
A -A-50
Write (A4)
read (B
B— B+ 50
write (58
Al

Deferred Datal Moditication

<T, start> <T, start> <T, start>
<Ty, A, 950> <Ty, A, 950> <T,, A, 950>

<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>
<T, start> <T, start>
<T;, C, 600> <T;, C, 600>
<T, commit>

If log
case.

(@) No redo actions need to be taken
(b) redo(7,) must be performed since < T%commit> is present

(c) redo(7,) must be performed followed by redo(7;) since
< T, commit> and <7, commit> are present

Immediate

The immed
database ug
be made as
since undoi
old value anca
Update log rec
|tem is written

We assume that t
storage

Can be extended to pc
rior to execution of an c
all log records correspond
to stable storage >

Out ut of uFdated blocks can take place at any tlme
efore or after transaction commit

Order in which blocks are output can be different
from the order in which they are written.

(T

Log

< T, start> I
<T, A, 1000, 95
7., B, 2000, 2050

<7, commit>

<7, start>
<7, C, 700, 600>

<7, commit> B

» Note: B, denotes block containing X.

Immediat

R(egantprl

0 undo res
thelr val

0 redo(sets
new values, ¢

Both operatio

- That is, even
effect is the sa

Needed since o
When recovering

> Transaction 7; need
record

<7;start>, but does nc
Transactlon 7. needs to be re
record <7, start > and the reco

Undo operatlons are performec
operations.

| | b ™

Immediate DB Moditic
Below we show

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T0 commit> <T0 commit>
<T, start> <T, start>
<T,, C, 700, 600> <T,, C, 700, 600>
<T; commit>

@) b
set to 950 and 2050 respectively.
(c) redo (7,) and redo (7;): A and B are set to 950 and 2050
respectively. Then Cis set to 600

