

 Failure Classification

 Storage Structure

 Recovery and Atomicity

 Log-Based Recovery

 Shadow Paging

 Recovery With Concurrent Transactions

 Buffer Management

 Failure with Loss of Nonvolatile Storage

 Advanced Recovery Techniques

 ARIES Recovery Algorithm

 Remote Backup Systems

 Transaction failure :
◦ Logical errors: transaction cannot complete due to some

internal error condition
◦ System errors: the database system must terminate an

active transaction due to an error condition (e.g., deadlock)

 System crash: a power failure or other hardware or
software failure causes the system to crash.
◦ Fail-stop assumption: non-volatile storage contents are

assumed to not be corrupted by system crash
 Database systems have numerous integrity checks to prevent

corruption of disk data

 Disk failure: a head crash or similar disk failure
destroys all or part of disk storage
◦ Destruction is assumed to be detectable: disk drives use

checksums to detect failures

 Recovery algorithms are techniques to ensure
database consistency and transaction
atomicity and durability despite failures
◦ Focus of this chapter

 Recovery algorithms have two parts
1. Actions taken during normal transaction

processing to ensure enough information exists to
recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability

 Volatile storage:
◦ does not survive system crashes

◦ examples: main memory, cache memory

 Nonvolatile storage:
◦ survives system crashes

◦ examples: disk, tape, flash memory,
 non-volatile (battery backed up) RAM

 Stable storage:
◦ a mythical form of storage that survives all failures

◦ approximated by maintaining multiple copies on
distinct nonvolatile media

 Maintain multiple copies of each block on separate disks

◦ copies can be at remote sites to protect against disasters such as fire or
flooding.

 Failure during data transfer can still result in inconsistent copies: Block
transfer can result in

◦ Successful completion

◦ Partial failure: destination block has incorrect information

◦ Total failure: destination block was never updated

 Protecting storage media from failure during data transfer (one
solution):

◦ Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same information
onto the second physical block.

3. The output is completed only after the second write successfully
completes.

 Protecting storage media from failure during data
transfer (cont.):

 Copies of a block may differ due to failure during
output operation. To recover from failure:
1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk
block.

2. Better solution:
 Record in-progress disk writes on non-volatile storage (Non-

volatile RAM or special area of disk).
 Use this information during recovery to find blocks that may be

inconsistent, and only compare copies of these.
 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have
an error (bad checksum), overwrite it by the other copy. If
both have no error, but are different, overwrite the second
block by the first block.

 Physical blocks are those blocks residing on the disk.
 Buffer blocks are the blocks residing temporarily in

main memory.
 Block movements between disk and main memory are

initiated through the following two operations:
◦ input(B) transfers the physical block B to main memory.
◦ output(B) transfers the buffer block B to the disk, and replaces

the appropriate physical block there.

 Each transaction Ti has its private work-area in which
local copies of all data items accessed and updated by
it are kept.
◦ Ti's local copy of a data item X is called xi.

 We assume, for simplicity, that each data item fits in,
and is stored inside, a single block.

 Transaction transfers data items between system buffer
blocks and its private work-area using the following
operations :
◦ read(X) assigns the value of data item X to the local variable xi.
◦ write(X) assigns the value of local variable xi to data item {X} in the

buffer block.
◦ both these commands may necessitate the issue of an input(BX)

instruction before the assignment, if the block BX in which X
resides is not already in memory.

 Transactions
◦ Perform read(X) while accessing X for the first time;
◦ All subsequent accesses are to the local copy.
◦ After last access, transaction executes write(X).

 output(BX) need not immediately follow write(X). System
can perform the output operation when it deems fit.

x

Y A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)
write(Y)

disk

work area

of T1

work area

of T2

memory

x2

 Modifying the database without ensuring
that the transaction will commit may leave
the database in an inconsistent state.

 Consider transaction Ti that transfers $50
from account A to account B; goal is either
to perform all database modifications made
by Ti or none at all.

 Several output operations may be required
for Ti (to output A and B). A failure may
occur after one of these modifications have
been made but before all of them are
made.

 To ensure atomicity despite failures, we first
output information describing the
modifications to stable storage without
modifying the database itself.

 We study two approaches:
◦ log-based recovery, and

◦ shadow-paging

 We assume (initially) that transactions run
serially, that is, one after the other.

 A log is kept on stable storage.
◦ The log is a sequence of log records, and maintains a record of update

activities on the database.

 When transaction Ti starts, it registers itself by writing a
 <Ti start>log record

 Before Ti executes write(X), a log record <Ti, X, V1, V2> is written,

where V1 is the value of X before the write, and V2 is the value to be
written to X.
◦ Log record notes that Ti has performed a write on data item Xj Xj had

value V1 before the write, and will have value V2 after the write.

 When Ti finishes it last statement, the log record <Ti commit> is
written.

 We assume for now that log records are written directly to stable
storage (that is, they are not buffered)

 Two approaches using logs
◦ Deferred database modification
◦ Immediate database modification

 The deferred database modification scheme records all
modifications to the log, but defers all the writes to after
partial commit.

 Assume that transactions execute serially
 Transaction starts by writing <Ti start> record to log.
 A write(X) operation results in a log record <Ti, X, V>

being written, where V is the new value for X
◦ Note: old value is not needed for this scheme

 The write is not performed on X at this time, but is
deferred.

 When Ti partially commits, <Ti commit> is written to the
log

 Finally, the log records are read and used to actually
execute the previously deferred writes.

 During recovery after a crash, a transaction
needs to be redone if and only if both <Ti
start> and<Ti commit> are there in the log.

 Redoing a transaction Ti (redoTi) sets the value
of all data items updated by the transaction to
the new values.

 Crashes can occur while
◦ the transaction is executing the original updates, or
◦ while recovery action is being taken

 example transactions T0 and T1 (T0 executes
before T1):

 T0: read (A) T1 : read (C)
 A: - A - 50 C:- C- 100
 Write (A) write (C)
 read (B)
 B:- B + 50
 write (B)

 Below we show the log as it appears at three
instances of time.

 If log on stable storage at time of crash is as in

case:
 (a) No redo actions need to be taken
 (b) redo(T0) must be performed since <T0 commit> is present
 (c) redo(T0) must be performed followed by redo(T1) since
 <T0 commit> and <Ti commit> are present

 The immediate database modification scheme allows
database updates of an uncommitted transaction to
be made as the writes are issued
◦ since undoing may be needed, update logs must have both

old value and new value
 Update log record must be written before database

item is written
◦ We assume that the log record is output directly to stable

storage
◦ Can be extended to postpone log record output, so long as

prior to execution of an output(B) operation for a data block
B, all log records corresponding to items B must be flushed
to stable storage

 Output of updated blocks can take place at any time
before or after transaction commit

 Order in which blocks are output can be different
from the order in which they are written.

Log Write Output

<T0 start>

<T0, A, 1000, 950>
To, B, 2000, 2050
 A = 950
 B = 2050

<T0 commit>

<T1 start>
<T1, C, 700, 600>
 C = 600
 BB, BC
<T1 commit>
 BA

 Note: BX denotes block containing X.

 Recovery procedure has two operations instead of one:
◦ undo(Ti) restores the value of all data items updated by Ti to

their old values, going backwards from the last log record for
Ti

◦ redo(Ti) sets the value of all data items updated by Ti to the
new values, going forward from the first log record for Ti

 Both operations must be idempotent
◦ That is, even if the operation is executed multiple times the

effect is the same as if it is executed once
 Needed since operations may get re-executed during recovery

 When recovering after failure:
◦ Transaction Ti needs to be undone if the log contains the

record
<Ti start>, but does not contain the record <Ti commit>.

◦ Transaction Ti needs to be redone if the log contains both the
record <Ti start> and the record <Ti commit>.

 Undo operations are performed first, then redo
operations.

 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and B are

 set to 950 and 2050 respectively.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050
 respectively. Then C is set to 600

