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Weak Levels of Consistency

» Degree-two consistency: differs from two-
phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time
- X-locks must be held till end of transaction

> Serializability is not guaranteed, programmer
must ensure that no erroneous database state
will occur]

» Cursor stability:

- For reads, each tuple is locked, read, and lock is
immediately released

- X-locks are held till end of transaction
- Special case of degree-two consistency



Weak Levels of Consistency in SQL

» SQL allows non-serializable executions
- Serializable: is the default

- Repeatable read: allows only committed records
to be read, and repeating a read should return
the same value (so read locks should be retained)
- However, the phantom phenomenon need not be

prevented

- T1 may see some records inserted by T2, but may not
see others inserted by T2

- Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

- Read uncommitted: allows even uncommitted
data to be read
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search/inse
> First lock the

- After locking &
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- During insertion/de
exclusive mode.
- When splitting or coalescing
parent, lock the parent in exclusive mode
» Above protocol can cause excessive deadlocks.
Better protocols are available; see Section 16.9
for one such protocol, the B-link tree protocol




