

 Multiversion schemes keep old versions of data
item to increase concurrency.
◦ Multiversion Timestamp Ordering
◦ Multiversion Two-Phase Locking

 Each successful write results in the creation of a
new version of the data item written.

 Use timestamps to label versions.
 When a read(Q) operation is issued, select an

appropriate version of Q based on the timestamp
of the transaction, and return the value of the
selected version.

 reads never have to wait as an appropriate
version is returned immediately.

 Each data item Q has a sequence of versions
<Q1, Q2,...., Qm>. Each version Qk contains three
data fields:
◦ Content -- the value of version Qk.
◦ W-timestamp(Qk) -- timestamp of the transaction that

created (wrote) version Qk
◦ R-timestamp(Qk) -- largest timestamp of a transaction

that successfully read version Qk

 when a transaction Ti creates a new version Qk of
Q, Qk's W-timestamp and R-timestamp are
initialized to TS(Ti).

 R-timestamp of Qk is updated whenever a
transaction Tj reads Qk, and TS(Tj) > R-
timestamp(Qk).

 The multiversion timestamp scheme presented next ensures
serializability.

 Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let Qk

denote the version of Q whose write timestamp is the largest write

timestamp less than or equal to TS(Ti).

 1. If transaction Ti issues a read(Q), then the value returned is the
 content of version Qk.

 2. If transaction Ti issues a write(Q), and if TS(Ti) < R-
 timestamp(Qk), then transaction Ti is rolled
 back. Otherwise, if TS(Ti) = W-timestamp(Qk), the contents of Qk
 are overwritten, otherwise a new version of Q is created.

 Reads always succeed; a write by Ti is rejected if some other transaction
Tj that (in the serialization order defined by the timestamp values) should
read Ti's write, has already read a version created by a transaction older
than Ti.

 Differentiates between read-only transactions and
update transactions

 Update transactions acquire read and write locks,
and hold all locks up to the end of the transaction.
That is, update transactions follow rigorous two-
phase locking.
◦ Each successful write results in the creation of a new

version of the data item written.
◦ each version of a data item has a single timestamp

whose value is obtained from a counter ts-counter that
is incremented during commit processing.

 Read-only transactions are assigned a timestamp
by reading the current value of ts-counter before
they start execution; they follow the multiversion
timestamp-ordering protocol for performing
reads.

 When an update transaction wants to read a data item,
it obtains a shared lock on it, and reads the latest
version.

 When it wants to write an item, it obtains X lock on; it
then creates a new version of the item and sets this
version's timestamp to .

 When update transaction Ti completes, commit
processing occurs:
◦ Ti sets timestamp on the versions it has created to ts-counter

+ 1
◦ Ti increments ts-counter by 1

 Read-only transactions that start after Ti increments ts-
counter will see the values updated by Ti.

 Read-only transactions that start before Ti increments
the
ts-counter will see the value before the updates by Ti.

 Only serializable schedules are produced.

 Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

 Schedule with deadlock
T1 T2

lock-X on X

write (X)
lock-X on Y

write (X)

wait for lock-X on X

wait for lock-X on Y

 System is deadlocked if there is a set of
transactions such that every transaction in the set
is waiting for another transaction in the set.

 Deadlock prevention protocols ensure that the
system will never enter into a deadlock state. Some
prevention strategies :
◦ Require that each transaction locks all its data items

before it begins execution (predeclaration).
◦ Impose partial ordering of all data items and require that

a transaction can lock data items only in the order
specified by the partial order (graph-based protocol).

 Following schemes use transaction timestamps
for the sake of deadlock prevention alone.

 wait-die scheme — non-preemptive
◦ older transaction may wait for younger one to release

data item. Younger transactions never wait for older
ones; they are rolled back instead.

◦ a transaction may die several times before acquiring
needed data item

 wound-wait scheme — preemptive
◦ older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger
transactions may wait for older ones.

◦ may be fewer rollbacks than wait-die scheme.

 Both in wait-die and in wound-wait schemes, a
rolled back transactions is restarted with its
original timestamp. Older transactions thus have
precedence over newer ones, and starvation is
hence avoided.

 Timeout-Based Schemes :
◦ a transaction waits for a lock only for a specified amount

of time. After that, the wait times out and the
transaction is rolled back.

◦ thus deadlocks are not possible

◦ simple to implement; but starvation is possible. Also
difficult to determine good value of the timeout interval.

 Deadlocks can be described as a wait-for graph,
which consists of a pair G = (V,E),
◦ V is a set of vertices (all the transactions in the system)
◦ E is a set of edges; each element is an ordered pair Ti Tj.

 If Ti  Tj is in E, then there is a directed edge from Ti
to Tj, implying that Ti is waiting for Tj to release a
data item.

 When Ti requests a data item currently being held by
Tj, then the edge Ti Tj is inserted in the wait-for
graph. This edge is removed only when Tj is no
longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the
wait-for graph has a cycle. Must invoke a deadlock-
detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

 When deadlock is detected :
◦ Some transaction will have to rolled back (made a

victim) to break deadlock. Select that transaction
as victim that will incur minimum cost.

◦ Rollback -- determine how far to roll back
transaction
 Total rollback: Abort the transaction and then restart

it.

 More effective to roll back transaction only as far as
necessary to break deadlock.

◦ Starvation happens if same transaction is always
chosen as victim. Include the number of rollbacks in
the cost factor to avoid starvation

 If two-phase locking is used :
◦ A delete operation may be performed only if the

transaction deleting the tuple has an exclusive lock on the
tuple to be deleted.

◦ A transaction that inserts a new tuple into the database is
given an X-mode lock on the tuple

 Insertions and deletions can lead to the phantom
phenomenon.
◦ A transaction that scans a relation (e.g., find all accounts in

Perryridge) and a transaction that inserts a tuple in the
relation (e.g., insert a new account at Perryridge) may
conflict in spite of not accessing any tuple in common.

◦ If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new account,
yet may be serialized before the insert transaction.

 The transaction scanning the relation is reading
information that indicates what tuples the relation
contains, while a transaction inserting a tuple updates the
same information.
◦ The information should be locked.

 One solution:
◦ Associate a data item with the relation, to represent the

information about what tuples the relation contains.
◦ Transactions scanning the relation acquire a shared lock in the

data item,
◦ Transactions inserting or deleting a tuple acquire an exclusive

lock on the data item. (Note: locks on the data item do not conflict
with locks on individual tuples.)

 Above protocol provides very low concurrency for
insertions/deletions.

 Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

 Every relation must have at least one index. Access to
a relation must be made only through one of the
indices on the relation.

 A transaction Ti that performs a lookup must lock all
the index buckets that it accesses, in S-mode.

 A transaction Ti may not insert a tuple ti into a
relation r without updating all indices to r.

 Ti must perform a lookup on every index to find all
index buckets that could have possibly contained a
pointer to tuple ti, had it existed already, and obtain
locks in X-mode on all these index buckets. Ti must
also obtain locks in X-mode on all index buckets that
it modifies.

 The rules of the two-phase locking protocol must be
observed.

 Degree-two consistency: differs from two-
phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time
◦ X-locks must be held till end of transaction
◦ Serializability is not guaranteed, programmer

must ensure that no erroneous database state
will occur]

 Cursor stability:
◦ For reads, each tuple is locked, read, and lock is

immediately released
◦ X-locks are held till end of transaction
◦ Special case of degree-two consistency

 SQL allows non-serializable executions
◦ Serializable: is the default
◦ Repeatable read: allows only committed records

to be read, and repeating a read should return
the same value (so read locks should be retained)
 However, the phantom phenomenon need not be

prevented
 T1 may see some records inserted by T2, but may not

see others inserted by T2

◦ Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

◦ Read uncommitted: allows even uncommitted
data to be read

 Indices are unlike other database items in that their only job
is to help in accessing data.

 Index-structures are typically accessed very often, much
more than other database items.

 Treating index-structures like other database items leads to
low concurrency. Two-phase locking on an index may result
in transactions executing practically one-at-a-time.

 It is acceptable to have nonserializable concurrent access to
an index as long as the accuracy of the index is maintained.

 In particular, the exact values read in an internal node of a
B+-tree are irrelevant so long as we land up in the correct leaf
node.

 There are index concurrency protocols where locks on
internal nodes are released early, and not in a two-phase
fashion.

 Example of index concurrency protocol:

 Use crabbing instead of two-phase locking on
the nodes of the B+-tree, as follows. During
search/insertion/deletion:
◦ First lock the root node in shared mode.
◦ After locking all required children of a node in shared

mode, release the lock on the node.
◦ During insertion/deletion, upgrade leaf node locks to

exclusive mode.
◦ When splitting or coalescing requires changes to a

parent, lock the parent in exclusive mode.

 Above protocol can cause excessive deadlocks.
Better protocols are available; see Section 16.9
for one such protocol, the B-link tree protocol

