Concurrency Control-
Timestamp Ordering




Multiversic

Multiversic
item to Inc
> Multiversio
> Multiversio

Each succes
new version o

Use timestamp

When a read(Q) ope
appropriate version ofr (

of the transaction, and retu:
selected version.

reads never have to wait as an appropriate
version is returned immediately.




Multiversion |k

» Each data
<Q]I Q y =
data fleids.
- Content —-
- W-timestamg
created (wrote)
- R-timestamp(Q,
that successfully re
» when a transaction
Q, Q. 's W-timestamp &
initiaklized to TS(7). -
R-timestamp of @, is updated whenever a
transaction 7;reads @Q,, and TS(7) > R-

timestamp(Q,/().




Multiversion
(Cont),

serializ

- Suppos
denote

timesta
1. If tran
content

2. If transac

timestamp

back. Otherv
are overwritte

» Reads always succe on
7;that (in the serializatic should
read 7;s write, has already read ansaction older
than 7.



Multiversion

» Differentiate
update tran

» Update tra
and hold all
That is, upda
phase locking

- Each successf
version of the da

- each version of a ¢
whose value is obtai

is incremented during
Read-only transactions are @
by reading the current value o —counter before
they start execution; they follow the multiversion
timgstamp—ordering protocol for performing
reads.



Multiversio
e tiph

it obtains a
version.

When it wan
then creates
version's time
When update
processing occ

- T, sets timesta
=

- T;increments ts—c

Read- only transactic

counter W|II see the val

Rhead only transactions

the

ts—counter will see the value befo

Only serializable schedules are produced




Deadlock

» Conside
7

» Schedule

lock-X on X
write (X)

wait for lock-X on Y

\/\
wait for lock-X on X



Deadlock Ha

» System is d
transaction
is waiting fc
Deadlock
system will rnée
prevention strai

- Require that eac
before it begins exe

- Impose partial orderin
a transaction can lock data
specified by the partial order (c



More DeadlOck
Strategies

» Following :
for the sak

» wait-die s
- older transa

data item. YoL
ones; they are

© a transaction ma
needed data item

» wounhd-wait scheme —

- older transaction wounds (forces rollback) of younger
transaction instead of waiting for it. Younger
transactions may wait for older ones.

- may be fewer rollbacks than wait-die scheme.
A




Deadlock

» Both in wa
rolled back
original ti
precedence
hence avoided

» Timeout-Based S

> a transaction walits fc ‘
of time. After that, the we
transaction is rolled back.

> thus deadlocks are not possible

- simple to implement; but starvation is possible. Also
difficult to determine good value of the timeout interval.



Deadlock Detec

Deadlocks ¢

which consi:

- Vis a set of

- Fis a set of ¢

If 7,.— Tiis |

to 7}, implying

data item.

When 7;requests a

7, then the edge 7,
Igraph. This edge is remoy
onger holding a data item needec

The system is in a deadlock state if and onCI}/ if the
e

wait-for graph has a cycle. Must invoke a deadlock-
detection algorithm periodically to look for cycles.




Wait-for graph without a cycle Wait-for graph with a cycle




Deadlock Recc

» When dea

- Some tra
victim) to
as victim tt
- Rollback —- c
transaction
Total rollback: A
it.
More effective to roll back t
necessary to break deadlock.
- Starvation happens if same transaction is always
chosen as victim. Include the number of rollbacks in
the cost factor to avoid starvation

A\




Insert and De

» If two-pha
-~ A delete of
transaction
tuple to be d

- A transactio
given an X-mc
» Insertions and c
phenomenon.
- A transaction that scar
Perryridge) and a transc
relation (e.g., insert a new
conflict in splte of not accessmg 3
- If only tuple locks are used, non- serializable schedules can

result: the scan transaction may not see the new account,
yet may be serialized before the insert transaction.



Transa
data item

Transaction

lock on the da

with locks on inc
Above protocol proy
insertions/deletions.

Index Iockinﬁ protocols provide higher concurrency while

preventing the phantom phenomenon, by requiring locks
on certain index buckets.

R
A Y -.
\.\ A ‘\“'\\
B \ b
N



Index LoE

Every relatic
a relation
indices on tk

A transactio
the index buc

A transaction /;1
relation r witho

7. must perform a Ic
index buckets that cot
Fomter to tuple £, had it e>

cks in X-mode on all these index bu . 7, must
also obtain locks in X=mode on all index buckets that
it modifies.

The rules of the two-phase locking protocol must be
observed




Weak Levels of Consistency

» Degree-two consistency: differs from two-
phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time
- X-locks must be held till end of transaction

> Serializability is not guaranteed, programmer
must ensure that no erroneous database state
will occur]

» Cursor stability:

- For reads, each tuple is locked, read, and lock is
immediately released

- X-locks are held till end of transaction
- Special case of degree-two consistency



Weak Levels of Consistency in SQL

» SQL allows non-serializable executions
- Serializable: is the default

- Repeatable read: allows only committed records
to be read, and repeating a read should return
the same value (so read locks should be retained)
- However, the phantom phenomenon need not be

prevented

- T1 may see some records inserted by T2, but may not
see others inserted by T2

- Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

- Read uncommitted: allows even uncommitted
data to be read




Concurren

Indices are un
is to help in a

Index-structu
more than ot

Treating index
low concurrenc
in transactions

It is acceptable
an index as long ¢

In particular, the ex
B+-tree are |rrelevan .
node.

There are index concurrency
internal nodes are released ea
fashion.




Concurrencys
(Cont.)

» Example of

» Use crabbi
the nodes ¢
search/inse
> First lock the

- After locking &
mode, release ti

- During insertion/de
exclusive mode.
- When splitting or coalescing
parent, lock the parent in exclusive mode
» Above protocol can cause excessive deadlocks.
Better protocols are available; see Section 16.9
for one such protocol, the B-link tree protocol




