


 Multiversion schemes keep old versions of data 
item to increase concurrency. 
◦ Multiversion Timestamp Ordering 
◦ Multiversion Two-Phase Locking 

 Each successful write results in the creation of a 
new version of the data item written. 

 Use timestamps to label versions. 
 When a read(Q) operation is issued, select an 

appropriate version of Q based on the timestamp 
of the transaction, and return the value of the 
selected version.   

 reads never have to wait as an appropriate 
version is returned immediately. 



 Each data item Q has a sequence of versions 
<Q1, Q2,...., Qm>. Each version Qk contains three 
data fields: 
◦ Content -- the value of version Qk. 
◦ W-timestamp(Qk) -- timestamp of the transaction that 

created (wrote) version Qk 
◦ R-timestamp(Qk) -- largest timestamp of a transaction 

that successfully read version Qk 

 when a transaction Ti creates a new version Qk of 
Q, Qk's W-timestamp and R-timestamp are 
initialized to TS(Ti).  

 R-timestamp of Qk is updated whenever a 
transaction Tj reads Qk, and TS(Tj) > R-
timestamp(Qk). 



 The multiversion timestamp scheme presented next ensures 
serializability.  

 Suppose that transaction Ti issues a read(Q) or write(Q) operation.  Let Qk 

denote the version of Q whose write timestamp is the largest write 

timestamp less than or equal to TS(Ti). 

  1.  If transaction Ti issues a read(Q), then the value returned is the        
       content of version Qk. 

  2.  If transaction Ti issues a  write(Q), and if TS(Ti) < R- 
       timestamp(Qk), then transaction Ti is rolled  
       back. Otherwise,  if TS(Ti) = W-timestamp(Qk), the contents of Qk  
       are overwritten, otherwise a new version of Q is created. 

 Reads always succeed; a write by Ti is rejected if some other transaction 
Tj that (in the serialization order defined by the timestamp values) should 
read Ti's write, has already read a version created by a transaction older 
than Ti. 



 Differentiates between read-only transactions and 
update transactions 

 Update transactions acquire read and write locks, 
and hold all locks up to the end of the transaction. 
That is, update transactions follow rigorous two-
phase locking. 
◦ Each successful write results in the creation of a new 

version of the data item written. 
◦ each version of a data item has a single timestamp 

whose value is obtained from a counter ts-counter that 
is incremented during commit processing. 

 Read-only transactions are assigned a timestamp 
by reading the current value of  ts-counter before 
they start execution; they follow the multiversion 
timestamp-ordering protocol for performing 
reads. 



 When an update transaction wants to read a data item, 
it obtains a shared lock on it, and reads the latest 
version.  

 When it wants to write an item, it obtains X lock on; it 
then creates a new version of the item and sets this 
version's timestamp to . 

 When update transaction Ti completes, commit 
processing occurs: 
◦ Ti sets timestamp on the versions it has created to  ts-counter 

+ 1 
◦ Ti increments  ts-counter by 1 

 Read-only transactions that start after Ti increments ts-
counter will see the values updated by Ti.  

 Read-only transactions that start before Ti increments 
the 
ts-counter will see the value before the updates by Ti.  

 Only serializable schedules are produced. 



 Consider the following two transactions: 

             T1:     write (X)               T2:    write(Y) 

                      write(Y)                         write(X) 

 Schedule with deadlock 
T1 T2 

lock-X on X 

write (X)  
lock-X on Y 

write (X)   

wait for lock-X on X 

wait for lock-X on Y 



 System is deadlocked if there is a set of 
transactions such that every transaction in the set 
is waiting for another transaction in the set. 

 Deadlock prevention protocols ensure that the 
system will never enter into a deadlock state. Some 
prevention strategies : 
◦ Require that each transaction locks all its data items 

before it begins execution (predeclaration). 
◦ Impose partial ordering of all data items and require that 

a transaction can lock data items only in the order 
specified by the partial order (graph-based protocol). 



 Following schemes use transaction timestamps 
for the sake of deadlock prevention alone. 

 wait-die scheme — non-preemptive 
◦ older transaction may wait for younger one to release 

data item. Younger transactions never wait for older 
ones; they are rolled back instead. 

◦ a transaction may die several times before acquiring 
needed data item 

 wound-wait scheme — preemptive 
◦ older transaction wounds (forces rollback) of younger 

transaction instead of waiting for it. Younger 
transactions may wait for older ones. 

◦ may be fewer rollbacks than wait-die scheme. 



 Both in wait-die and in wound-wait schemes, a 
rolled back transactions is restarted with its 
original timestamp. Older transactions thus have 
precedence over newer ones, and starvation is 
hence avoided. 

 Timeout-Based Schemes : 
◦ a transaction waits for a lock only for a specified amount 

of time. After that, the wait times out and the 
transaction is rolled back. 

◦ thus deadlocks are not possible 

◦ simple to implement; but starvation is possible. Also 
difficult to determine good value of the timeout interval. 



 Deadlocks can be described as a wait-for graph, 
which consists of a pair G = (V,E),  
◦ V is a set of vertices (all the transactions in the system) 
◦ E is a set of edges; each element is an ordered pair Ti Tj.   

 If Ti   Tj is in E, then there is a directed edge from Ti 
to Tj, implying that Ti is waiting for Tj to release a 
data item. 

 When Ti requests a data item currently being held by 
Tj, then the edge Ti  Tj is inserted in the wait-for 
graph. This edge is removed only when Tj is no 
longer holding a data item needed by Ti. 

 The system is in a deadlock state if and only if the 
wait-for graph has a cycle.  Must invoke a deadlock-
detection algorithm periodically to look for cycles. 



Wait-for graph without a cycle Wait-for graph with a cycle 



 When deadlock is  detected : 
◦ Some transaction will have to rolled back (made a 

victim) to break deadlock.  Select that transaction 
as victim that will incur minimum cost. 

◦ Rollback -- determine how far to roll back 
transaction 
 Total rollback: Abort the transaction and then restart 

it. 

 More effective to roll back transaction only as far as 
necessary to break deadlock. 

◦ Starvation happens if same transaction is always 
chosen as victim. Include the number of rollbacks in 
the cost factor to avoid starvation 



 If two-phase locking is used : 
◦ A  delete operation may be performed only if the 

transaction deleting the tuple has an exclusive lock on the 
tuple to be deleted. 

◦ A transaction that inserts a new tuple into the database is 
given an X-mode lock on the tuple 

 Insertions and deletions can lead to the phantom 
phenomenon. 
◦ A transaction that scans a relation (e.g., find all accounts in 

Perryridge) and a transaction that inserts a tuple in the 
relation (e.g., insert a new account at Perryridge) may 
conflict in spite of not accessing any tuple in common.  

◦ If only tuple locks are used, non-serializable schedules can 
result: the scan transaction may not see the new account, 
yet may be serialized before the insert transaction. 



 The transaction scanning the relation is reading  
information that indicates what tuples the relation 
contains, while a transaction inserting a tuple updates the 
same information. 
◦  The information should be locked. 

 One solution:  
◦ Associate a data item with the relation, to represent the 

information about what tuples the relation contains. 
◦ Transactions scanning the relation acquire a shared lock in the 

data item,  
◦ Transactions inserting or deleting a tuple acquire an exclusive 

lock on the data item. (Note: locks on the data item do not conflict 
with locks on individual tuples.) 

 Above protocol provides very low concurrency for 
insertions/deletions. 

 Index locking protocols provide higher concurrency while  
preventing the phantom phenomenon, by requiring locks  
on certain index buckets.  



 Every relation must have at least one index. Access to 
a relation must be made only through one of the 
indices on the relation. 

 A transaction Ti that performs a lookup must lock all 
the index buckets that it accesses, in S-mode. 

 A transaction Ti may not insert a tuple ti into a 
relation r  without updating all indices to r. 

 Ti must perform a lookup on every index to find all 
index buckets that could have possibly contained a 
pointer to tuple ti, had it existed already, and obtain 
locks in X-mode on all these index buckets. Ti must 
also obtain locks in X-mode on all index buckets that 
it modifies. 

 The rules of the two-phase locking protocol must be 
observed. 



 Degree-two consistency: differs from two-
phase locking in that S-locks may be 
released at any time, and locks may be 
acquired at any time 
◦ X-locks must be held till end of transaction 
◦ Serializability is not guaranteed, programmer 

must ensure that no erroneous database state 
will occur] 

 Cursor stability:  
◦ For reads, each tuple is locked, read, and lock is 

immediately released 
◦ X-locks are held till end of transaction 
◦ Special case of degree-two consistency 



 SQL allows non-serializable executions 
◦ Serializable: is the default 
◦ Repeatable read: allows only committed records 

to be read, and repeating a read should return 
the same value (so read locks should be retained) 
 However, the phantom phenomenon need not be 

prevented 
 T1 may see some records inserted by T2, but may not 

see others inserted by T2 

◦ Read committed:  same as degree two 
consistency, but most systems implement it as 
cursor-stability 

◦ Read uncommitted: allows even uncommitted 
data to be read 



 Indices are unlike other database items in that their only job 
is to help in accessing data. 

 Index-structures are typically accessed very often, much 
more than other database items.  

 Treating index-structures like other database items leads to 
low concurrency.   Two-phase locking on an index may result 
in transactions executing practically one-at-a-time. 

 It is acceptable to have nonserializable concurrent access to 
an index as long as the accuracy of the index is maintained. 

 In particular, the exact values read in an internal node of a  
B+-tree are irrelevant so long as we land up in the correct leaf 
node. 

 There are index concurrency protocols where locks on 
internal nodes are released early, and not in a two-phase 
fashion. 



 Example of index concurrency protocol: 

 Use crabbing instead of two-phase locking on 
the nodes of the B+-tree, as follows.  During 
search/insertion/deletion: 
◦ First lock the root node in shared mode. 
◦ After locking all required children of a node in shared 

mode, release the lock on the node. 
◦ During insertion/deletion, upgrade leaf node locks to 

exclusive mode. 
◦ When splitting or coalescing requires changes to a 

parent, lock the parent in exclusive mode. 

 Above protocol can cause excessive deadlocks. 
Better protocols are available; see Section 16.9 
for one such protocol, the B-link tree protocol 


