
Database Management System

Fundamental Database Concepts

CONTENTS

 Basics of DBMS

 Purpose of DBMS

 Applications of DBMS

 Views of Data

 Instances and Schema

 Data Models

 Database Languages

 Responsibility of Database Administrator

 DBMS contains information about a particular
enterprise
◦ Collection of interrelated data

◦ Set of programs to access the data

◦ An environment that is both convenient and
efficient to use

DBMS is a software (i.e. programs along with
environment) which manages interrelated data about
a particular enterprise.

 Data is facts/ information.
 A database is any collection of data.
 A DBMS is a software system designed to maintain a

database.
 A Database Management System (DBMS) is a software

package designed to store and manage databases.

 We use a DBMS when
◦ there is a large amount of data
◦ security and integrity of the data are important
◦ many users access the data concurrently

 Database: A collection of related data.

 Data: Known facts that can be recorded and have an implicit
meaning.

 Mini-world: Some part of the real world about which data is
stored in a database. For example, student grades and
transcripts at a university.

 Database Management System (DBMS): A software package/
system to facilitate the creation and maintenance of a
computerized database.

 Database System: The DBMS software together with the data
itself. Sometimes, the applications are also included.

 Without a DBMS, we'd have:

data stored as bits on disks
organized as files

Access by a collection
of ad hoc programs

in C++, Java, PHP, etc.
users of
the data

There is no control or
coordination of what
these programs do

with the data

 With a DBMS, we have:

data stored as bits on disks
organized as files

users of
the data

DBMS provides control
and coordination to

protect the data.

DBMS

applications

 In the early days, database applications were built directly on top of
file systems

 Drawbacks of using file systems to store data:

◦ Data redundancy and inconsistency

 Multiple file formats, duplication of information in different
files

◦ Difficulty in accessing data

 Need to write a new program to carry out each new task

◦ Data isolation — multiple files and formats

◦ Integrity problems

 Integrity constraints (e.g. account balance > 0) become
“buried” in program code rather than being stated explicitly

 Hard to add new constraints or change existing ones

 Drawbacks of using file systems (cont.)
◦ Atomicity of updates

 Failures may leave database in an inconsistent state with
partial updates carried out

 Example: Transfer of funds from one account to another should
either complete or not happen at all

◦ Concurrent access by multiple users

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to inconsistencies

 Example: Two people reading a balance and updating it at
the same time

◦ Security problems

 Hard to provide user access to some, but not all, data

 Database systems offer solutions to all the above problems

 Define a database : in terms of data types, structures
and constraints

 Construct or Load the Database on a secondary storage
medium

 Manipulating the database : querying, generating
reports, insertions, deletions and modifications to its
content

 Concurrent Processing and Sharing by a set of users and
programs – yet, keeping all data valid and consistent

Other features:

◦ Protection or Security measures to prevent
unauthorized access

◦ “Active” processing to take internal actions on data

◦ Presentation and Visualization of data

 Self-describing nature of a database system: A DBMS catalog
stores the description of the database. The description is
called meta-data). This allows the DBMS software to work
with different databases.

 Insulation between programs and data: Called program-data
independence. Allows changing data storage structures and
operations without having to change the DBMS access
programs.

 Data Abstraction: A data model is used to hide storage details
and present the users with a conceptual view of the
database.

 Support of multiple views of the data: Each user may see a
different view of the database, which describes only the data
of interest to that user.

 Sharing of data and multiuser transaction processing :
allowing a set of concurrent users to retrieve and to update
the database. Concurrency control within the DBMS
guarantees that each transaction is correctly executed or
completely aborted. OLTP (Online Transaction Processing) is a
major part of database applications.

 Banking: all transactions

 Airlines: reservations, schedules

 Universities: registration, grades

 Sales: customers, products, purchases

 Online retailers: order tracking, customized

recommendations

 Manufacturing: production, inventory, orders,

supply chain

 Human resources: employee records, salaries, tax

deductions

Applications of DBMS

 Physical level: describes how a record (e.g., customer) is stored.

 Logical level: describes data stored in database, and the
relationships among the data.

 type customer = record

 customer_id : string;
 customer_name : string;
 customer_street : string;
 customer_city : string;

end;

 View level: application programs hide details of data types.
Views can also hide information (such as an employee’s salary)
for security purposes.

An architecture for a database system

 Similar to types and variables in programming languages

 Schema – the logical structure of the database

 Structural Description of the type of facts held in a database.

◦ Example: The database consists of information about a set of customers
and accounts and the relationship between them)

◦ Analogous to type information of a variable in a program

◦ Physical schema: database design at the physical level

◦ Logical schema: database design at the logical level

 Instance – the actual content of the database at a particular point in time

◦ Analogous to the value of a variable

 Physical Data Independence – the ability to modify the physical schema
without changing the logical schema

◦ Applications depend on the logical schema

◦ In general, the interfaces between the various levels and components
should be well defined so that changes in some parts do not seriously
influence others.

 A collection of tools for describing
◦ Data
◦ Data relationships
◦ Data semantics
◦ Data constraints

There are a number of different ways of organizing a
schema, i.e. of modeling a database structure, these
ways are known as Data Models.

 Relational model

 Entity-Relationship data model (mainly for database
design)

 Object-based data models (Object-oriented and
Object-relational)

 Semistructured data model (XML)

 Other older models:
◦ Network model
◦ Hierarchical model

 Language for accessing and manipulating the data
organized by the appropriate data model

◦ DML also known as query language

 Two classes of languages

◦ Procedural – user specifies what data is required and
how to get those data (PL/SQL)

◦ Declarative (nonprocedural) – user specifies what data
is required without specifying how to get those data
(SQL)

 SQL is the most widely used query language

 Specification notation for defining the database schema
Example: create table account (

 account_number char(10),
 branch_name char(10),
 balance integer)

 DDL compiler generates a set of tables stored in a data
dictionary

 Data dictionary contains metadata (i.e., data about data)
◦ Database schema
◦ Data storage and definition language

 Specifies the storage structure and access methods used
◦ Integrity constraints

 Domain constraints

 Referential integrity (e.g. branch_name must correspond to
a valid branch in the branch table)

◦ Authorization

data

users of
the data

data
dictionary

data
definition
processor

query processor
security manager

concurrency manager
index manager

application
program(s)

application
program(s)

application
program(s)

application
program(s)

internal/implementation view

external/application view

DBMS
software

components

data
description

users of
the data

application
program(s)

application
program(s)

application
program(s)

application
program(s)

data
data

dictionary

data
definition
processor

query processor
security manager

concurrency manager
index manager

DDL:

data

definition

language

system

configuration

languages

QL: query language

DML: data manipulation language

GPL: general purpose languages

Users are differentiated by the way they expect to interact
with the system

 Application programmers – interact with system
through DML calls

 Sophisticated users – form requests in a database query
language

 Specialized users – write specialized database
applications that do not fit into the traditional data
processing framework

 Naïve users – invoke one of the permanent application
programs that have been written previously

◦ Examples, people accessing database over the web,
bank tellers, clerical staff

 Coordinates all the activities of the database system

◦ has a good understanding of the enterprise’s
information resources and needs.

 Database administrator's duties include:

◦ Storage structure and access method definition

◦ Schema and physical organization modification

◦ Granting users authority to access the database

◦ Backing up data

◦ Monitoring performance and responding to
changes

 Database tuning

The architecture of a database systems is greatly
influenced by the underlying computer system on
which the database is running:

 Centralized

 Client-server

 Parallel (multiple processors and disks)

 Distributed

