Finite Difference Approximations

o.f"

X

_ F(x+dx)— f(x)
) dx

A\

Simple geophysical partial differential equations
Finite differences - definitions

Finite-difference approximations to pde‘s

» Exercises
» Acoustic wave equation in 2D
» Seismometer equations
» Diffusion-reaction equation

Finite differences and Taylor Expansion
Stability -> The Courant Criterion
Numerical dispersion
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Partial Differential Equations in Geophysics

O’p=Cc°Ap +s
A= (o7 +c’9i +02)

P pressure
c acoustic wave speed
S sources

The acoustic
wave equation

- seismology

- acoustics

- oceanography
- meteorology

Finite Differences

7,C =kAC—veVC—RC + p

C tracer concentration
k diffusivity

v flow velocity

R reactivity

p sources

Diffusion, advection,
Reaction

- geodynamics

- oceanography

- meteorology

- geochemistry
- sedimentology

- geophysical fluid dynamics



Numerical methods: properties

Finite differences

v

Finite elements

Finite volumes

Finite Differences

v

v

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’'s equations

- Ground penetrating radar

-> robust, simple concept, easy to
parallelize, regular grids, explicit method

- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,
irregular grids, more complex algorithms,
engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irreqular grids, explicit
method




Other numerical methods

Particle-based
methods

- lattice gas methods

- molecular dynamics

- granular problems

- fluid flow

- earthquake simulations

-> very heterogeneous problems, nonlinear problems

Boundary element
methods

Pseudospectral
methods

Finite Differences

- problems with boundaries (rupture)

- based on analytical solutions

- only discretization of planes

-> good for problems with special boundary conditions
(rupture, cracks, etc)

- orthogonal basis functions, special case of FD

- spectral accuracy of space derivatives

- wave propagation, ground penetrating radar

-> reqular grids, explicit method, problems with
strongly heterogeneous media




What is a finite difference?

Common definitions of the derivative of f(x):

f (X+dx)— f(x)

o, f =Ilim
dx—0 dx

5. = lim f(xX)— f(x—dx)
dx—0 dx

5. = lim f (X+dx)— f(x—dx)
dx—0 2dx

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE

Finite Differences



What is a finite difference?

The equivalent approximations of the derivatives are:

5 F* f(x+dx)— f(x)

. forward difference
dx

o f = f(x)— f(x—dx)
dx

backward difference

5 f A f (Xx+dx)— f(x—dx)
< 2dx

centered difference

Finite Differences



guestion

How good are the FD approximations?

N/ —
N/ —

This leads us to Taylor series....

Finite Differences



Taylor Series

Taylor series are expansions of a function f(x) for some
finite distance dx to f(x+dx)

f (xxdx)= f(x)xdxf (x)+d7f (x)+d?xf (x)+dT4f (X) £...

What happens, if we use this expression for

o f'~ f (Xx+dx)— f(x)
dx

Finite Differences



Taylor Series

Finite Differences

... that leads to :

f(x+dx)—f(x) 1 dx® ax’

o dx{dxf'(x)+2! f"(x)+—! f"'(x)+..1

— f'(x) +O(dx)

The error of the first derivative using the forward
formulation is of order dx.

Is this the case for other formulations of the derivative?
Let’s check!



Taylor Series

... with the centered formulation we get:

f(x+dx/2)—f(x—dx/2) _ 1 dxf'(X)+d—X3 f(X)+
dx X 3

— ' (x) +O(dx?)

The error of the first derivative using the centered
approximation is of order dx2.

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!
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Alternative Derivation

f(x)

Xj -1 Xj T Xj +1 Xj + 2 Xj + 3

desired x location

What is the (approximate) value of the function or its (first,
second ..) derivative at the desired location ?

How can we calculate the weights for the neighboring points?

Finite Differences



Alternative Derivation

f(x) Lets’ try Taylor’s Expansion
\ f () '
X
. 0 .
i
dx
] [ < ~ [ [ i

f(x+dx)~ f(X)+ f'(X)dx (1)
f(x—dx)~ f(x)— f'(x)dx (2
we are looking for something like
(1) ~ (1)
O~ = W T (Koo
J=1,

Finite Differences



2nd order weights

deriving the second-order scheme ...

af " = af + af 'dx
bf — = bf —bf 'dx
—af " +bf =(a+b)f +(a—Db)f ' 'dx

the solution to this equation for a and b leads to
a system of equations which can be cast in matrix form

Interpolation Derivative

a+b=1 a+b=0
a—-b=0 a—b=1/dx

Finite Differences



Taylor Operators

... In matrix form ...

Interpolation Derivative

PRy (S R ) (o B 9

... SO that the solution for the weights is ...
a) (1 1)1
b) (1 - 0

Finite Differences




Interpolation and difference weights

... and the result ...

Interpolation Derivative
ay (1/2 aj 1 1
b) (1/2 b) 2dx{-1

Can we generalise this idea to longer operators?

Let us start by extending the Taylor expansion beyond f(xtdx):

Finite Differences



Higher order operators

(2dx)3

2
*a f(x—2dx) =~ f —(2dx) f'+ (Zd)l() fr_ . froo
2 3
*b f(x—dx)~ f —(dx)f'+—(dx) f"——(dx) £
2! 3!
2 3
*C | f(x+dx)= f +(dx) f'+ (d;) frg (d;) fooe
2 3
| f(x+2dx) ~ f+(2dx) f (2‘;() froy (220 o

... again we are looking for the coefficients a,b,c,d with which
the function values at x£(2)dx have to be multiplied in order
to obtain the interpolated value or the first (or second) derivative!

... Let us add up all these equations like in the previous case ...

Finite Differences



Higher order operators

af 7 +bf +cf " +df T =
f(a+b+c+d)+
dxf'(—2a—b+c+2d) +
dx2f(2a+2+S 4 2d)+
2 2

dfr—laipiiciBay
65 6 6 6

... we can now ask for the coefficients a,b,c,d, so that the
left-hand-side yields either f,f',f" f” ...

Finite Differences



... if you want the interpolated value ...

a+b+c+d =1

—2a—b+c+2d =0

2a+9+£+2d=0
2 2

—§a—1b+lc+§d20
6 6 6 6

... you need to solve the matrix system ...

Finite Differences



High-order interpolation

... Interpolation ...

(1 1 1 1Ya) (1
~2 -1 1 2 |b| o
2 12 12 2 |c| |0
-8/6 -1/6 1/6 8/6)d) (0,

... with the result after inverting the matrix on the Ihs ...

(a) (-1/6
b| | 2/3
c| | 2/3

d) (-1/6

Finite Differences



First derivative

... first derivative ...

(1 1 1 1 Ya 0
-2 -1 1 2 |b| [1/dx
2 12 1/2 2 |c 0

-8/6 -1/6 1/6 8/6,d) 0

... with the result ...

(a (1/6
b| 1 |-4/3
c| 2dx| 4/3

d, ~1/6,
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Our first FD algorithm (acld.m) !

@Zp — CZAp 4+ S P pressure
t , , , c acoustic wave speed
A= (0] +0 +0;) s sources

Problem: Solve the 1D acoustic wave equation using the finite

Difference method.

Solution:

2t2

ot +dt) = =

X2

[P(x+dx) —2p(x) + p(x —dx)]

+2p(t) — p(t —dt) + sdt’

Finite Differences




Problems: Stability

S - [P(x+d) ~2p(x) + p(x— )]

+ 2 p(t) — p(t —dt) + sdt?

p(t+dt) =

Stability: Careful analysis using harmonic functions shows that
a stable numerical calculation is subject to special conditions
(conditional stability). This holds for many numerical problems.
(Derivation on the board).

Finite Differences

c—<e=1]1
dXx




Problems: Dispersion
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25

Dispersion: The numerical
approximation has
artificial dispersion,

in other words, the wave
speed becomes frequency
dependent (Derivation in
the board).

You have to find a
frequency bandwidth
where this effect is small.
The solution is o use a
sufficient number of grid
points per wavelength.



Our first FD codel!

o(t + dt) = Cd%[p(x +dx) —2p () + p(x—dx)]

+ 2 p(t) — p(t —dt) + sdt?

% Time stepping
for i=l:nt,
% FD
disp(sprintf (' Time step : %i',1));

for j=2:nx-1
d2p (3)=(p(J+1)-2*p(J)+p(J-1)) /dx"2; $ space derivative

end

pnew=2*p-pold+d2p*dt"2; % time extrapolation
pnew (nx/2) =pnew (nx/2) +src (i) *dt"2; % add source term
pold=p; % time levels

p=pnew;

p(1)=0; % set boundaries pressure free

p (nx)=0;

s Display

plot (x,p, 'b-")
title(' FD ")
drawnow

end

Finite Differences



Snapshot Example

Finite Differences



Seismogram Dispersion
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Finite Differences - Summary

Conceptually the most simple of the numerical methods and
can be learned quite quickly

Depending on the physical problem FD methods are
conditionally stable (relation between time and space
Increment)

FD methods have difficulties concerning the accurate
Implementation of boundary conditions (e.g. free surfaces,
absorbing boundaries)

FD methods are usually explicit and therefore very easy to
Implement and efficient on parallel computers

FD methods work best on regular, rectangular grids

Finite Differences



