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Finite Difference Approximations 

 

 

 Simple geophysical partial differential equations 

 Finite differences - definitions 

 Finite-difference approximations to pde‘s 

 Exercises 

 Acoustic wave equation in 2D 

 Seismometer equations 
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 Finite differences and Taylor Expansion 

 Stability -> The Courant Criterion 

 Numerical dispersion  
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 The acoustic  

wave equation 

- seismology 

- acoustics 

- oceanography  

- meteorology 

Diffusion, advection,  

Reaction 

- geodynamics 

- oceanography  

- meteorology 

- geochemistry 

- sedimentology 

- geophysical fluid dynamics 

P pressure 
c acoustic wave speed 
s sources 

pRCCCkCt  v

C tracer concentration 
k diffusivity 
v flow velocity 
R reactivity 
p sources 

Partial Differential Equations in Geophysics 
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Finite differences 

Finite volumes 

- time-dependent PDEs 

- seismic wave propagation 

- geophysical fluid dynamics 

- Maxwell’s equations 

- Ground penetrating radar 

-> robust, simple concept, easy to  

    parallelize, regular grids, explicit method 

Finite elements 
- static and time-dependent PDEs 

- seismic wave propagation 

- geophysical fluid dynamics 

- all problems 

-> implicit approach, matrix inversion, well founded, 

    irregular grids, more complex algorithms,      

    engineering problems 

- time-dependent PDEs 

- seismic wave propagation 

- mainly fluid dynamics 

-> robust, simple concept, irregular grids, explicit   

    method 

Numerical methods: properties 
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Particle-based 

methods   

Pseudospectral  

methods 

- lattice gas methods 

- molecular dynamics 

- granular problems 

- fluid flow 

- earthquake simulations 

-> very heterogeneous problems, nonlinear problems 

Boundary element 

methods 

- problems with boundaries (rupture) 

- based on analytical solutions 

- only discretization of planes  

-> good for problems with special boundary conditions 

     (rupture, cracks, etc) 

- orthogonal basis functions, special case of FD 

- spectral accuracy of space derivatives 

- wave propagation, ground penetrating radar 

-> regular grids, explicit method, problems with   

    strongly heterogeneous media 

Other numerical methods 
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What is a finite difference? 

Common definitions of the derivative of f(x): 
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These are all correct definitions in the limit dx->0. 

But we want dx to remain FINITE 



Finite Differences 

 

 

What is a finite difference? 

The equivalent approximations of the derivatives are: 
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forward difference 

backward difference 

centered difference 
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The big question: 

How good are the FD approximations? 


This leads us to Taylor series.... 
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Taylor Series 

Taylor series are  expansions of a function f(x) for some  

finite distance dx to f(x+dx) 

What happens, if we use this expression for 
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Taylor Series 

... that leads to : 

The error of the first derivative using the forward  

formulation is of order dx.  

Is this the case for other formulations of the derivative? 

Let’s check! 
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... with the centered formulation we get: 

The error of the first derivative using the centered  

approximation is of order dx2.  

This is an important results: it DOES matter which formulation 

we use. The centered scheme is more accurate! 

Taylor Series 
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xj  1 xj xj  1 xj  2 xj  3

f xj( )

dx h

desired x location 

What is the (approximate) value of the function or  its (first, 

second ..) derivative at the desired location ? 

How can we calculate the weights for the neighboring points? 

x 

f(x) 

Alternative Derivation 
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Lets’ try Taylor’s Expansion 

f x( )

dx

x 

f(x) 
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we are looking for something like 
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deriving the second-order scheme … 
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the solution to this equation for a and b leads to  

a system of equations which can be cast in matrix form 
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Interpolation Derivative 

2nd order weights 
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Taylor Operators 

... in matrix form ... 
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Interpolation Derivative 

... so that the solution for the weights is ... 
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... and the result ... 

Interpolation Derivative 

Can we generalise this idea to longer operators? 
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Let us start by extending the Taylor expansion beyond f(x±dx): 

Interpolation and difference weights 



Finite Differences 

'''
!3

)2(
''

!2

)2(
')2()2(

32

f
dx

f
dx

fdxfdxxf *a | 

 

*b | 

 

*c | 

 

*d | 

... again we are looking for the coefficients a,b,c,d with which  

the function values at x±(2)dx have to be multiplied in order 

to obtain the interpolated value or the first (or second) derivative! 

 

... Let us add up all these equations like in the previous case ... 
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Higher order operators 
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... we can now ask for the coefficients a,b,c,d, so that the 

left-hand-side yields either f,f’,f’’,f’’’ ... 

Higher order operators 
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... if you want  the interpolated value ... 

... you need to solve the matrix system ... 

Linear system 
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High-order interpolation 
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... with the result after inverting the matrix on the lhs ... 
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... Interpolation  ... 
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... with the result  ... 














































6/1

3/4

3/4

6/1

2

1

dx

d

c

b

a

... first derivative  ... 

First derivative 
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Our first FD algorithm (ac1d.m) ! 
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 P pressure 
c acoustic wave speed 
s sources 

Problem: Solve the 1D acoustic wave equation using the finite  
Difference method. 

Solution: 

 

2

2

22

)()(2

)()(2)()(

sdtdttptp

dxxpxpdxxp
dx

dtc
dttp







Finite Differences 

Problems: Stability 

 
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Stability: Careful analysis using harmonic functions shows that  
a stable numerical calculation is subject to special conditions  
(conditional stability). This holds for many numerical problems.  
(Derivation on the board). 
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Problems: Dispersion 
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Dispersion: The numerical 
approximation has 
artificial dispersion, 
in other words, the wave 
speed becomes frequency 
dependent (Derivation in 
the board).  
You have to find a 
frequency bandwidth 
where this effect is small. 
The solution is to use a 
sufficient number of grid 
points per wavelength. 

True velocity 
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Our first FD code! 
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% Time stepping 

 

for i=1:nt, 

       

   % FD 

    

   disp(sprintf(' Time step : %i',i)); 

    

   for j=2:nx-1 

      d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dx^2; % space derivative  

   end 

   pnew=2*p-pold+d2p*dt^2;                % time extrapolation 

   pnew(nx/2)=pnew(nx/2)+src(i)*dt^2;     % add source term 

   pold=p;    % time levels 

   p=pnew; 

   p(1)=0;  % set boundaries pressure free 

   p(nx)=0; 

    

   % Display  

   plot(x,p,'b-') 

   title(' FD ') 

   drawnow 

 

end 
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Snapshot Example 
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Seismogram Dispersion 
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Finite Differences - Summary 

 Conceptually the most simple of the numerical methods and 

can be learned quite quickly 

 Depending on the physical problem FD methods are 

conditionally  stable (relation between time and space 

increment) 

 FD methods have difficulties concerning the accurate 

implementation of boundary conditions (e.g. free surfaces, 

absorbing boundaries) 

 FD methods are usually explicit and therefore very easy to 

implement and efficient on parallel computers 

 FD methods work best on regular, rectangular grids 

 


