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Definition  A differential equation is an equation involving 
derivatives of an unknown function and possibly the 
function itself as well as the independent variable. 

Example  

Definition  The order of a differential equation is the highest order 
of the derivatives of the unknown function appearing in 
the equation 
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In the simplest cases, equations may be solved by direct integration. 

Observe that the set of solutions to the above 1st order equation has 1 
parameter, while the solutions to the above 2nd order equation depend 
on two parameters. 



Separable Differential Equations 

A separable differential equation can be expressed as 

the product of a function of x and a function of y. 
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A separable differential equation can be expressed as 
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Family of solutions (general solution) 
of a differential equation 

Example  

The picture on the right shows some 
solutions to the above differential 
equation.  The straight lines   
                y = x  and  y = -x  
are special solutions.  A unique 
solution curve goes through any 
point of the plane different from the 
origin.  The special solutions y = x  
and  y = -x  go both through the 
origin.  
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Initial conditions 

• In many physical problems we need to find the particular 

solution that satisfies a condition of the form y(x0)=y0. 

This is called an initial condition, and the problem of 

finding a solution of the differential equation that 

satisfies the initial condition is called an initial-value 

problem. 

• Example (cont.): Find a solution to y2 = x2 + C satisfying 

the initial condition y(0) = 2.  

  22 = 02 + C 

  C = 4 

  y2 = x2 + 4  
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Example (cont.): 
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function of x. 

We can find y as an explicit function 

of x by taking the tangent of both 

sides. 
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A population of living creatures normally increases at a 

rate that is proportional to the current level of the 

population.  Other things that increase or decrease at a 

rate proportional to the amount present include radioactive 

material and money in an interest-bearing account. 

If the rate of change is proportional to the amount present, 

the change can be modeled by: 
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Rate of change is proportional 

to the amount present. 

Divide both sides by y. 

Integrate both sides. 
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Real-life populations do not increase forever.   There is 

some limiting factor such as food or living space. 

There is a maximum population, or carrying capacity, M. 

A more realistic model is the logistic growth model where 

growth rate is proportional to both the size of the 

population (y) and the amount by which y falls short of the 

maximal size (M-y). Then we have the equation: 
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The solution to this differential equation (derived in the textbook): 
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A tank contains 1000 L of brine with 15 kg of dissolved 

salt. Pure water enters the tank at a rate of 10 L/min. 

The solution is kept thoroughly mixed and drains from 

the tank at the same rate.  

How much salt is in the tank  

(a) after t minutes; 

(b) after 20 minutes? 

This problem can be solved by modeling it as a differential 

equation. 

  (the solution on the board) 
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Problem 45. 

A vat with 500 gallons of beer contains 4% 

alcohol (by volume). Beer with 6% 

alcohol is pumped into the vat at a rate of 

5 gal/min and the mixture is pumped out 

at the same rate. What is the percentage 

of alcohol after an hour? 

Mixing Problems 


