Chapter Objectives

Understanding the meaning of local and global truncation
errors and their relationship to step size for one-step
methods for solving ODEs.

Knowing how to implement the following Runge-Kutta (RK)
methods for a single ODE:

— Euler

— Heun

— Midpoint

— Fourth-Order RK

Knowing how to iterate the corrector of Heun’s method.

Knowing how to implement the following Runge-Kutta
methods for systems of ODEs:

— Euler

— Fourth-order RK

Ordinary Differential Equations

* Methods described here are for solving differential
equations of the form:

d
jf=f(t,y)
* The methods in this chapter are all one-step
methods and have the general format:
Yin :yi+¢h

where ¢ is called an increment function, and is
used to extrapolate from an old value y; to a new
value y;,,.

Euler's Method

The first derivative
provides a direct
estimate of the slope
at t;

dy

v — t, :

a, f(t.)
and the Euler method
uses that estimate as
the iIncrement

function:
¢:f(ti7yi)
Vist :yi+f(tiﬂyi)h

Predicted

|
True

} error

<Y

Error Analysis for Euler's Method

* The numerical solution of ODESs involves two types
of error:
— Truncation errors, caused by the nature of the techniques
employed
— Roundoff errors, caused by the limited numbers of
significant digits that can be retained

« The total, or global truncation error can be further
split into:
— local truncation error that results from an application
method in question over a single step, and

— propagated truncation error that results from the
approximations produced during previous steps.

Error Analysis for Euler's Method

* The local truncation error for Euler's method
Is O(h?) and proportional to the derivative of
f(t,y) while the global truncation error is O(h).

 This means:

— The global error can be reduced by decreasing
the step size, and

— Euler's method will provide error-free predictions
If the underlying function is linear.

* Euler's method is conditionally stable,
depending on the size of h.

MATLAB Code for Euler's Method

function [t,y] = eulode(dydt,tspan,y0,h,varargin)
% eulode: Euler ODE solver
% [t,y] = eulode(dydt,tspan,y0,h,pl,p2,...):

% uses Euler's method to integrate an ODE
% input:

% dydt = name of the M-file that evaluates the ODE
% tspan = [ti, tf] where ti and tf = initial and
% final values of independent variable

% y0 = initial value of dependent variable

% h = step size

% pl,p2,... = additional parameters used by dydt
$ output:

% t = vector of independent variable

%

y = vector of solution for dependent variable

if nargin<4,error('at least 4 input arguments required'), end

ti = tspan(l);tf = tspan(2);

if ~(tf>ti),error('upper limit must be greater than lower'),end
£ = (ti:h:tf) % n = TengEh(t) ;

% if necessary, add an additional value of t

$ so that range goes from t = ti to tf

if t(n)<tf

t(n+l) = tf;
n = n+l;
end
y = yO*ones(n,1l); %preallocate y to improve efficiency
for i = 1:n-1 $implement Euler's method
y(i+l) = y(i) + dydt(t(i),y(i),varargin{:})*(c(i+l)-t(i));

end

Heun’'s Method

« One method to improve Euler’'s method is to determine derivatives at the
beginning and predicted ending of the interval and average them:

y y

Slope = f(t;+1, ¥3+1)
——‘»

; S Y + £t 041)
Slope = f(1,,y,) : QES= 2

}i ‘fi+| ¢ ;i }i+l 2
(a) (b)

* This process relies on making a prediction of the new value of y, then
correcting it based on the slope calculated at that new value.

« This predictor-corrector approach can be iterated to convergence:

—1
e m I +f(ti+1’y11+1)h

Midpoint Method

* Another improvement to Euler's method is
similar to Heun’s method, but predicts the
slope at the midpoint of an interval rather

than at the end:

Slope = f(t;11/2: Yi+172)

 This method has a loca

(b)

truncation error of

O(h3) and global error of O(h?)

Runge-Kutta Methods

* Runge-Kutta (RK) methods achieve the accuracy of a Taylor
series approach without requiring the calculation of higher

derivatives.
* For RK methods, the increment function ¢ can be generally

written as:
¢=ak +ak,++ak

where the a’s are constants and the k’s are
kl :f(tiayi)
k, :f(ti +phy, +q, 1k1h)
.k3 = f(ti +p,h,y +q,kh +%2kzh)

k, = f(ti +P, Y +q, kb +q, L kh+ e+ qn—l,n—1kn—1h)
where the p’s and g’s are constants.

Classical Fourth-Order Runge-
Kutta Method

* The most popular RK methods are fourth-
order, and the most commonly used form Is:

where:
kl — fgiﬂyi

)

1

Vi =V, +é(k1 +2k, + 2k, + k,)h

k, = f| ti+§h,yl.+—k1h

\
;

1

1

k.=flt.+—hy.+—kh
3 f i 2 yl 2 2

\

ky=f(t,+h,y,+k;h)

4

)

Y

a il s
! S 5
5 e 5
1 7 ,” : :
NP e
k| : ,” R ¢ :
Vit " -1k !
e b

Systems of Equations

« Many practical problems require the solution of a
system of equations:

ay,

= = £t 00205 0)
d
% :fz(ta)./pyzf”:yn)
d
0’2”‘ = f.(t. 5002, 0,)

* The solution of such a system requires that n initial
conditions be known at the starting value of t.

Solution Methods

» Single-equation methods can be used to
solve systems of ODE’s as well; for example,
Euler's method can be used on systems of
eguations - the one-step method is applied
for every equation at each step before
proceeding to the next step.

* Fourth-order Runge-Kutta methods can also
be used, but care must be taken In
calculating the k's.

MATLAB RK4 Code

function [tp.yp] = rkésys(dydt,tspan,y0,h,varargin)

% rkdsys: fourth-order Runge-Kutta for a system of ODEs

% [t,y] = rkédsys(dydt,tspan,y0,h,pl,p2,...): integrates
% a system of ODEs with fourth-order RK method
% input:

% dydt = name of the M-file that evaluates the ODEs

% tspan = [ti, tf]; initial and final times with output
% generated at interval of h, or

% = [£0 tl1 ... tf]; specific times where solution output
% v0 = initial values of dependent variables

% h = step size

% pl,p2,... = additional parameters used by dydt

% output:

% tp = vector of independent variable

% yp = vector of solution for dependent variables

if nargin<4d,error('at least 4 input arguments required'),
if any(diff(tspan)<=0),erroxr('tspan not ascending order'),

n = length(tspan);
ti = tspan(l);tf = tspan(n):
ifn == 2
te=(eirh=c) ' n = Tength{t)
if t(n)<tf
t(n+l) = tf;
n = n+l;
end
else
t = tspan;
end
te
np
i=1;
while(1)
tend = t(np+l);
hh = t(np+l1l) - t(ap);

Bl vl Y i="v0:
1; tp(np) = tt; yp(np,:) = y(1,:);

if hh>h,hh = h;end
while (1)

if tt+hh>tend,hh = tend-tt;end

k1l = dyde(tt, w1, 2),varargin{ 1) ';

ymid = yv(i,:) + kl.*hh./2;

k2 = dydt(tt+hh/2,ymid,varargin{:})"

ymid = y(i,:) + k2*hh/2;

k3 = dydt(tt+hh/2,ymid,varargin{:})"

vend = y(i,:) + k3*hh;

k4 = dydt(tt+hh,yend,varargin{:})';

phi = (k1+2* (k2+k3)+k4)/6;
yv(i+l,:) =y(i,:) + phi*hh;
Et = Et+hh;

i=1i+1;

if tt>=tend, break, end

end
np = np+l; Ep(np) = tt; yp(np,:) =
if tt>=tf,break,end

end

~

~

V(e Tt

