
Chapter Objectives 

• Recognizing the difference between bracketing and open 
methods for root location. 

• Understanding the fixed-point iteration method and how you 
can evaluate its convergence characteristics. 

• Knowing how to solve a roots problem with the Newton-
Raphson method and appreciating the concept of quadratic 
convergence. 

• Knowing how to implement both the secant and the modified 
secant methods. 

• Knowing how to use MATLAB’s fzero function to estimate 
roots. 

• Learning how to manipulate and determine the roots of 

polynomials with MATLAB.  



Open Methods 

• Open methods differ from bracketing 

methods, in that open methods require only a 

single starting value or two starting values 

that do not necessarily bracket a root. 

• Open methods may diverge as the 

computation progresses, but when they do 

converge, they usually do so much faster 

than bracketing methods.  



Graphical Comparison of Methods 

a) Bracketing method 

b) Diverging open method 

c) Converging open method - note speed! 



Simple Fixed-Point Iteration 

• Rearrange the function f(x)=0 so that x is on 

the left-hand side of the equation: x=g(x) 

• Use the new function g to predict a new 

value of x - that is, xi+1=g(xi) 

• The approximate error is given by: 



a 
x i1  x i

x i1

 100%



Example 

• Solve f(x)=e-x-x 

• Re-write as x=g(x) by isolating x 
(example: x=e-x) 

• Start with an initial guess (here, 0) 
 
 
 
 
 
 

• Continue until some tolerance 
is reached 

i xi |a| % |t| % |t|i/|t|i-1 

0 0.0000 100.000 

1 1.0000 100.000  76.322 0.763 

2 0.3679 171.828  35.135 0.460 

3 0.6922  46.854  22.050 0.628 

4 0.5005  38.309  11.755 0.533 



Convergence 

• Convergence of the simple 

fixed-point iteration method 

requires that the derivative 

of g(x) near the root has a 

magnitude less than 1. 

a) Convergent, 0≤g’<1 

b) Convergent, -1<g’≤0 

c) Divergent, g’>1 

d) Divergent, g’<-1 



Newton-Raphson Method 

• Based on forming the tangent line to the f(x) 

curve at some guess x, then following the 

tangent line to where it crosses the x-axis. 



f '(x i) 
f (x i)  0

x i  x i1

x i1  x i 
f (x i)

f '(x i)



Pros and Cons 

• Pro: The error of the i+1th iteration 

is roughly proportional to the 

square of the error of the ith 

iteration - this is called quadratic 

convergence 

• Con: Some functions show slow or 

poor convergence 



Secant Methods 

• A potential problem in implementing the 

Newton-Raphson method is the evaluation of 

the derivative - there are certain functions 

whose derivatives may be difficult or 

inconvenient to evaluate. 

• For these cases, the derivative can be 

approximated by a backward finite divided 

difference: 



f '(xi) 
f (xi1) f (xi)

xi1  xi



Secant Methods (cont) 

• Substitution of this approximation for the 

derivative to the Newton-Raphson method 

equation gives: 

 

 

• Note - this method requires two initial 

estimates of x but does not require an 

analytical expression of the derivative. 


xi1  xi 
f (xi) xi1  xi 
f (xi1) f (xi)



MATLAB’s fzero Function 

• MATLAB’s fzero provides the best qualities of both 
bracketing methods and open methods. 
– Using an initial guess: 

x = fzero(function, x0) 
[x, fx] = fzero(function, x0) 

• function is a function handle to the function being evaluated 

• x0 is the initial guess 

• x is the location of the root 

• fx is the function evaluated at that root 

– Using an initial bracket:  
x = fzero(function, [x0 x1]) 
[x, fx] = fzero(function, [x0 x1]) 

• As above, except x0 and x1 are guesses that must bracket a sign 
change 

 



fzero Options 

• Options may be passed to fzero as a third input 

argument - the options are a data structure created 

by the optimset command 
• options = optimset(‘par1’, val1, ‘par2’, val2,…) 

– parn is the name of the parameter to be set 

– valn is the value to which to set that parameter 

– The parameters commonly used with fzero are: 

• display: when set to ‘iter’ displays a detailed record of all the 

iterations 

• tolx: A positive scalar that sets a termination tolerance on x. 



fzero Example 

• options = optimset(‘display’, ‘iter’); 

– Sets options to display each iteration of root 

finding process 

• [x, fx] = fzero(@(x) x^10-1, 0.5, options) 

– Uses fzero to find roots of f(x)=x10-1 starting with 

an initial guess of x=0.5. 

• MATLAB reports x=1, fx=0 after 35 function 

counts 



Polynomials 

• MATLAB has a built in program called roots to 

determine all the roots of a polynomial - including 

imaginary and complex ones. 

• x = roots(c) 

– x is a column vector containing the roots 

– c is a row vector containing the polynomial coefficients 

• Example: 

– Find the roots of 

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25 

– x = roots([1 -3.5 2.75 2.125 -3.875 1.25]) 



Polynomials (cont) 

• MATLAB’s poly function can be used to determine 
polynomial coefficients if roots are given: 
– b = poly([0.5 -1]) 

• Finds f(x) where f(x) =0 for x=0.5 and x=-1 

• MATLAB reports b = [1.000 0.5000 -0.5000] 

• This corresponds to f(x)=x2+0.5x-0.5 

• MATLAB’s polyval function can evaluate a 
polynomial at one or more points: 
– a = [1 -3.5 2.75 2.125 -3.875 1.25]; 

• If used as coefficients of a polynomial, this corresponds to 
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25 

– polyval(a, 1) 
• This calculates f(1), which MATLAB reports as -0.2500 


