
Chapter Objectives

• Recognizing the difference between bracketing and open
methods for root location.

• Understanding the fixed-point iteration method and how you
can evaluate its convergence characteristics.

• Knowing how to solve a roots problem with the Newton-
Raphson method and appreciating the concept of quadratic
convergence.

• Knowing how to implement both the secant and the modified
secant methods.

• Knowing how to use MATLAB’s fzero function to estimate
roots.

• Learning how to manipulate and determine the roots of

polynomials with MATLAB.

Open Methods

• Open methods differ from bracketing

methods, in that open methods require only a

single starting value or two starting values

that do not necessarily bracket a root.

• Open methods may diverge as the

computation progresses, but when they do

converge, they usually do so much faster

than bracketing methods.

Graphical Comparison of Methods

a) Bracketing method

b) Diverging open method

c) Converging open method - note speed!

Simple Fixed-Point Iteration

• Rearrange the function f(x)=0 so that x is on

the left-hand side of the equation: x=g(x)

• Use the new function g to predict a new

value of x - that is, xi+1=g(xi)

• The approximate error is given by:



a 
x i1  x i

x i1

 100%

Example

• Solve f(x)=e-x-x

• Re-write as x=g(x) by isolating x
(example: x=e-x)

• Start with an initial guess (here, 0)

• Continue until some tolerance
is reached

i xi |a| % |t| % |t|i/|t|i-1

0 0.0000 100.000

1 1.0000 100.000 76.322 0.763

2 0.3679 171.828 35.135 0.460

3 0.6922 46.854 22.050 0.628

4 0.5005 38.309 11.755 0.533

Convergence

• Convergence of the simple

fixed-point iteration method

requires that the derivative

of g(x) near the root has a

magnitude less than 1.

a) Convergent, 0≤g’<1

b) Convergent, -1<g’≤0

c) Divergent, g’>1

d) Divergent, g’<-1

Newton-Raphson Method

• Based on forming the tangent line to the f(x)

curve at some guess x, then following the

tangent line to where it crosses the x-axis.



f '(x i) 
f (x i)  0

x i  x i1

x i1  x i 
f (x i)

f '(x i)

Pros and Cons

• Pro: The error of the i+1th iteration

is roughly proportional to the

square of the error of the ith

iteration - this is called quadratic

convergence

• Con: Some functions show slow or

poor convergence

Secant Methods

• A potential problem in implementing the

Newton-Raphson method is the evaluation of

the derivative - there are certain functions

whose derivatives may be difficult or

inconvenient to evaluate.

• For these cases, the derivative can be

approximated by a backward finite divided

difference:



f '(xi) 
f (xi1) f (xi)

xi1  xi

Secant Methods (cont)

• Substitution of this approximation for the

derivative to the Newton-Raphson method

equation gives:

• Note - this method requires two initial

estimates of x but does not require an

analytical expression of the derivative.


xi1  xi 
f (xi) xi1  xi 
f (xi1) f (xi)

MATLAB’s fzero Function

• MATLAB’s fzero provides the best qualities of both
bracketing methods and open methods.
– Using an initial guess:

x = fzero(function, x0)
[x, fx] = fzero(function, x0)

• function is a function handle to the function being evaluated

• x0 is the initial guess

• x is the location of the root

• fx is the function evaluated at that root

– Using an initial bracket:
x = fzero(function, [x0 x1])
[x, fx] = fzero(function, [x0 x1])

• As above, except x0 and x1 are guesses that must bracket a sign
change

fzero Options

• Options may be passed to fzero as a third input

argument - the options are a data structure created

by the optimset command
• options = optimset(‘par1’, val1, ‘par2’, val2,…)

– parn is the name of the parameter to be set

– valn is the value to which to set that parameter

– The parameters commonly used with fzero are:

• display: when set to ‘iter’ displays a detailed record of all the

iterations

• tolx: A positive scalar that sets a termination tolerance on x.

fzero Example

• options = optimset(‘display’, ‘iter’);

– Sets options to display each iteration of root

finding process

• [x, fx] = fzero(@(x) x^10-1, 0.5, options)

– Uses fzero to find roots of f(x)=x10-1 starting with

an initial guess of x=0.5.

• MATLAB reports x=1, fx=0 after 35 function

counts

Polynomials

• MATLAB has a built in program called roots to

determine all the roots of a polynomial - including

imaginary and complex ones.

• x = roots(c)

– x is a column vector containing the roots

– c is a row vector containing the polynomial coefficients

• Example:

– Find the roots of

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– x = roots([1 -3.5 2.75 2.125 -3.875 1.25])

Polynomials (cont)

• MATLAB’s poly function can be used to determine
polynomial coefficients if roots are given:
– b = poly([0.5 -1])

• Finds f(x) where f(x) =0 for x=0.5 and x=-1

• MATLAB reports b = [1.000 0.5000 -0.5000]

• This corresponds to f(x)=x2+0.5x-0.5

• MATLAB’s polyval function can evaluate a
polynomial at one or more points:
– a = [1 -3.5 2.75 2.125 -3.875 1.25];

• If used as coefficients of a polynomial, this corresponds to
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– polyval(a, 1)
• This calculates f(1), which MATLAB reports as -0.2500

