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Numerical Differentiation and 

Integration 
 

• Standing in the heart of calculus are the mathematical concepts 

of differentiation and integration: 
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Figure PT6.1 
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Figure PT6.2 
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Noncomputer Methods for 

Differentiation and Integration 

• The function to be differentiated or integrated 
will typically be in one of the following three 
forms:  

– A simple continuous function such as polynomial, 
an exponential, or a trigonometric function. 

– A complicated continuous function that is difficult 
or impossible to differentiate or integrate directly. 

– A tabulated function where values of x and f(x) are 
given at a number of discrete points, as is often the 
case with experimental or field data. 
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Figure PT6.4 
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Figure PT6.7 
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Newton-Cotes Integration Formulas 

Chapter 21 

• The Newton-Cotes formulas are the most common 

numerical integration schemes.  

 

• They are based on the strategy of replacing a 

complicated function or tabulated data with an 

approximating function that is easy to integrate: 
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Figure 21.1 
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Figure 21.2 
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The Trapezoidal Rule 

• The Trapezoidal rule is the first of the Newton-Cotes 

closed integration formulas, corresponding to the 

case where the polynomial is first order: 

 

 

 

• The area under this first order polynomial is an        

estimate of the integral of f(x) between the limits of a 

and b: 
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Figure 21.4 
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Error of the Trapezoidal Rule/ 

 

• When we employ the integral under a straight line 

segment to approximate the integral under a curve, 

error may be substantial: 

 

 

 

 where x lies somewhere in the interval from a to b. 
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The Multiple Application Trapezoidal Rule/ 

 

• One way to improve the accuracy of the trapezoidal rule is to 

divide the integration interval from a to b into a number of 

segments and apply the method to each segment. 

• The areas of individual segments can then be added to yield 

the integral for the entire interval. 

 

  

  

  

 Substituting the trapezoidal rule for each integral yields: 
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Figure 21.8 
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Simpson’s Rules 

• More accurate estimate of an integral is 
obtained if a high-order polynomial is used to 
connect the points. The formulas that result 
from taking the integrals under such 
polynomials are called Simpson’s rules. 

 

Simpson’s 1/3 Rule/ 

• Results when a second-order interpolating 
polynomial is used.  
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Figure 21.10 
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