Numerical Differentiation and
Integration

 Standing in the heart of calculus are the mathematical concepts
of differentiation and integration:
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Noncomputer Methods for
Differentiation and Integration

* The function to be differentiated or integrated
will typically be in one of the following three
forms:

— A simple continuous function such as polynomial,
an exponential, or a trigonometric function.

— A complicated continuous function that is difficult
or impossible to differentiate or integrate directly.

— A tabulated function where values of x and f(x) are
given at a number of discrete points, as Is often the
case with experimental or field data.
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Figure PT6.7
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Newton-Cotes Integration Formulas
Chapter 21

 The Newton-Cotes formulas are the most common
numerical integration schemes.

» They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:

| = jl f (x)dx ;_T f (x)dx
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Figure 21.1
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Figure 21.2
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The Trapezoidal Rule

« The Trapezoidal rule is the first of the Newton-Cotes
closed integration formulas, corresponding to the
case where the polynomial is first order:

| = T f (X)dx ;j‘ f, (x)dx

« The area under this first order polynomial is an
estimate of the integral of f(x) between the limits of a
and b:

f(a)+ f(b
| =(b—a) ( )2 ( )}Trapezoidal rule
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Error of the Trapezoidal Rule/

* When we employ the integral under a straight line
segment to approximate the integral under a curve,
error may be substantial:

1 " 3
B =—, T(e)b-2a)

where & lies somewhere in the interval from a to b.

by Lale Yurttas, Texas Chapter 21 12
A&M University

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.




The Multiple Application Trapezoidal Rule/

« One way to improve the accuracy of the trapezoidal rule is to
divide the integration interval from a to b into a number of
segments and apply the method to each segment.

» The areas of individual segments can then be added to yield
the integral for the entire interval.

_b-a

" n

h a=X, b=x

n

I ::T'f(x)dx-+T'f(x)dx+~--+ T'f(x)dx

Substituting the trapezoidal rule for each integral yields:

L _p Q)+ 1) o TO)+T(X,) f(x )+ f(x,)
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Simpson’s Rules

» More accurate estimate of an integral Is
obtained if a high-order polynomial is used to
connect the points. The formulas that result
from taking the integrals under such
polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule/

 Results when a second-order interpolating
polynomial iIs used.
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Figure 21.10
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