Quantization in Implementing Systems

e Consider the following system

e A more realistic model would be
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Effects of Coefficient Quantization in IIR Systems

When the parameters of a rational system are quantized
— The poles and zeros of the system function move

If the system structure of the system is sensitive to
perturbation of coefficients

— The resulting system may no longer be stable

— The resulting system may no longer meet the original specs
We need to do a detailed sensitivity analysis

- Quantize the coefficients and analyze frequency response

- Compare frequency response to original response

We would like to have a general sense of the effect of
quantization



Effects on Roots

H(Z): k=0 Quantization =I:I(z): =

Each root is affected by quantization errors in ALL coefficient

Tightly clustered roots can be significantly effected

- Narrow-bandwidth lowpass or bandpass filters can be very
sensitive to quantization noise

The larger the number of roots in a cluster the more sensitive
it becomes

This is the reason why second order cascade structures are
less sensitive to quantization error than higher order system

— Each second order system is independent from each other



Poles of Quantized Second-Order Sections

e Consider a 2nd order system with complex-conjugate pole pair
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e The pole locations after quantization will be on the grid point
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Coupled-Form Implementation of Complex-Conjugate Pair
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e Equivalent implementation of Il
the second order system

e But the quantization grid this
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Effects of Coefficient Quantization in FIR Systems

No poles to worry about only zeros
Direct form is commonly used for FIR systems

H2) = 3l

Suppose the coefficients are c_|uantized

o) = Sk =HE)+ aH)  aHE)- 5 st

Quantlzed system is linearly related to the quantlzatlon error

> H(z)

> AH(z)

Again quantization noise is higher for clustered zeros
However, most FIR filters have spread zeros



Round-Off Noise in Digital Filters
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Analysis of Quantization Error

e Combine all error terms to single location to get
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e The contribution of e[n] to the output is fln]= Y a,fln —k]+ e[n]
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e The variance of the output error term f[n] is
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Round-Off Noise in a First-Order System

Suppose we want to implement the following stable system
b

H(Z) - 1_a37! ‘a‘ <1
The quantization error noise variance is
2 = M+1+N)2— Sy =22 S =22 |
f 12 &0 12 & 12 | 1-|g

Noise variance increases as |a| gets closer to the unit circle

As |a| gets closer to 1 we have to use more bits to
compensate for the increasing error

e[n] = e [n] + e |n]




Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

For stable IIR systems the output will decay to zero when the
input becomes zero

A finite-precision implementation, however, may continue to
oscillate indefinitely

Nonlinear behaviour very difficult to analyze so we sill study
by example

Example: Limite Cycle Behavior in First-Order Systems
yln] = ayln — 1]+ x|n] al <1
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Example Cont'd
yln| = ayln— 1]+ x|n] al <1
e Assume that a=1/2=0.100b and the input is

x[n] = és[n] _ (0.111b)]n]

e If we calculate the output for values of n
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e A finite input caused an oscilation with period 1
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Example: Limite Cycles due to Overflow

Consider a second-order system realized by

y[n] = x[n]+ Q(a,¥[n - 1]) + Q(a,y[n - 2])
— Where Q() represents two’s complement rounding
- Word length is chosen to be 4 bits

Assume a;=3/4=0.110b and a,=-3/4=1.010b
Also assume
v-1]=3/4=0.110b and y[-2|]=-3/4=1.010b
The output at sample n=0 is
y[0]=0.110bx0.110b+1.010bx1.010b
=0.100100b+0.100100b

After rounding up we get
y[0]=0.101b+0.101b=1.010b=-3/4

Binary carry overflows into the sign bit changing the sign

When repeated for n=1
y[0]=1.010b+1.010b=0.110=3/4
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Avoiding Limite Cycles

Desirable to get zero output for zero input: Avoid limit-cycles
Generally adding more bits would avoid overflow

Using double-length accumulators at addition points would
decrease likelihood of limit cycles

Trade-off between limit-cycle avoidance and complexity
FIR systems cannot support zero-input limit cycles
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