# DIFFERENCE BETWEEN IIR FILTER AND FIR FILTER

#### Let {h[n]: impulse response {x(n)}: input,

{y(n)}: output

 Finite impulse response (FIR) filter:

$$y(n) = \sum_{j=0}^{J-1} h(j)x(n-j)$$

#### **IIR Digital Filter**

 Infinite impulse response (IIR) filter

$$y(n) = \sum_{i=1}^{P} a(i)y(n-i) + \sum_{k=0}^{Q} b(k)x(n-k)$$

$$\frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{Q} b(m)z^{-m}}{1 + \sum_{k=1}^{P} a(k)z^{-k}} = \frac{B(z)V(z)}{A(z)V(z)}$$

#### Impulse input:

if  $x(n)=\delta(n)$ , y(n)=h(n) is the impulse response that has finite extent.

Computation is the same as convolution.

## **IIR Digital Filter**

- The length of {y(n)} may be infinite!
- Stability concerns:
  - The magnitude of y(n)
     may become infinity
     even if all x(n) are finite!
  - coefficient values,
  - quantization error

 FIR filter can be implemented using direct form or fast convolution methods like FFT ,hence STABLE.

Realized by Non-Recursive methods.

#### **IIR Digital Filter**

- IIR filters are often factored into products (cascade realization) or sum (parallel realization) of 1<sup>st</sup> order or 2<sup>nd</sup> order sections due to numerical concerns(Manual Calculation only possible)
- Realised by Recursive(Feedback) methods.

- They have LINEAR PHASE.
- Less susceptible to Noise.
- To design we have
- a)Park Mc Clellan's method.
- b)Fourier Series method.
- c)Frequency Sampling OR Inverse Fourier Transform method.
- d)Window technique.

E.g.

Rectangular, Hamming, Hanning, Bartlett, Blackmann, Kaiser Windows.

e)Minimax or Optimal Filter Design.

#### **IIR Digital Filter**

- They don't have linear phase & hence are used at places where phase distortion is tolerable.
- More susceptible to Noise.
- To design we have

a)Impulse Invarience method.

- b)Bilinear Transformation method.
- c)Backward difference method.

- Storage Requirements
   & Arithmetic operation
   is more here.
- Greater Flexibility to control the shape of their Magnitude response & Realization Efficiency.

## **IIR Digital Filter**

- Storage Requirements
   & Arithmetic operation is less.
- Less Flexibility to control the shape of their Magnitude response.
- Often derived from analog filters

#### **Various other window functions**

Table 9.1 Various window functions and their corresponding shapes

| Sr.<br>No. | Name of<br>Window        | Time-domain sequence, $\omega(n)$ , $0 \le n \le M-1$           | Shape of window function                                                                                                    |
|------------|--------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1.         | Rectangular              | 1                                                               | 0.8 $0.6$ $0.4$ $0.2$ $0$ $M-1$                                                                                             |
| 2.         | Bartlett<br>(triangular) | $1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$               | 0.8 $0.6$ $0.4$ $0.2$ $0$ $0$ $M-1$                                                                                         |
| 3.         | Blackman                 | $0.42-05\cos\frac{2\pi n}{M-1} + 0.08$ $\cos\frac{4\pi n}{M-1}$ | $\begin{array}{c c} \omega(n) & & & \\ \hline 1 & 0.8 & & \\ 0.6 & & & \\ 0.4 & & & \\ 0.2 & & & \\ 0 & & & \\ \end{array}$ |
| 4.         | Hanning                  | $0.54 - 0.46\cos\frac{2\pi n}{M - 1}$                           | $ \begin{array}{c c}  & \omega(n) \\  & 1 \\  & 0.8 \\  & 0.6 \\  & 0.4 \\  & 0.2 \\  & 0 \\  & 0 \end{array} $             |

#### **Various other window functions**

458 □□ Digital Signal Processing



## Comparative Study for Trade Off between Attenuation of Sidelobes & Transition Width of main Lobe.

## Commonly Used Windows

| S.<br>No. | Name of Window     | Transition width of the main lobe | Minimum<br>stopband<br>attenuation | Relative<br>amplitude<br>of sidelobe |
|-----------|--------------------|-----------------------------------|------------------------------------|--------------------------------------|
| 1.        | Rectangular window | $\frac{4\pi}{M+1}$                | – 21 dB                            | - 13 dB                              |
| 2.        | Bartlett window    | $\frac{8\pi}{M}$                  | – 25 dB                            | – 25 dB                              |
| 3.        | Hanning window     | $\frac{8\pi}{M}$                  | – 44 dB                            | - 31 dB                              |
| 4.        | Hamming window     | $\frac{8\pi}{M}$                  | – 53 dB                            | - 41 dB                              |
| 5.        | Blackman window    | $\frac{12\pi}{M}$                 | – 74 dB                            | – 57 dB                              |

It may be noted that the characteristics of Kaiser window have not have not have

#### FIR Filter Design: Rectangular Window

- Let w(n)=Rectangular Window Function,
- Where

• 
$$w(n)=1$$

$$0 \le n \le M-1$$

hd(n)=Infinite Input Sequence(Arbitrary),&

h(n)=Finite Truncated Impulse Response.

Then

$$h(n)=hd(n) \times w(n)$$



Fig. 9.5. Truncation process

for

P2 -

71 1

Gibbs Phenomenon:Ringing Effect/Oscillatory Behaviour due to Sidelobes(generated owing to the sharp cut-off/abrupt discontinuity) in the Frequency Response of the window Function



Fig. 9.6. (a) The desired frequency response  $H_d(\omega)$  (b) The frequency response of FIR filter obtained by windowing. It has smoothing and ringing effect because of windowing.