» Standing in the heart of calculus are the mathematical
concepts of differentiation and integration:
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Noncomputer Methods for
Differentiation and Integration

» The function to be differentiated or integrated will
typically be in one of the following three forms:

> A simple continuous function such as polynomial, an
exponential, or a trigonometric function.

- A complicated continuous function that is difficult or
Impossible to differentiate or integrate directly.

- Atabulated function where values of x and f(x) are given at a
number of discrete points, as is often the case with
experimental or field data.
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Newton-Cotes Integration Formulas

» The Newton-Cotes formulas are the most common
numerical integration schemes.

» They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:
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The Trapezoidal Rule

» The Trapezoidal rule is the first of the Newton-Cotes
closed integration formulas, corresponding to the
case where the polynomial is first order:
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» The area under this first order polynomial is an
estimate of the integral of f(x) between the limits of a
and b:
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Error of the Trapezoidal Rule/

» When we employ the integral under a straight line
segment to approximate the integral under a curve,
error may be substantial:
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where & lies somewhere in the interval from a to b.




The Multiple Application Trapezoidal Rule/

» One way to improve the accuracy of the trapezoidal rule is to
divide the integration interval from a to b into a number of
segments and apply the method to each segment.

» The areas of individual segments can then be added to yield
the integral for the entire interval.
_b=8
n

h a=X, b=X
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Substituting the trapezoidal rule for each integral yields:

f (Xn—l) + f (Xn)
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Simpson’s Rules

» More accurate estimate of an integral Is obtained if a
high-order polynomial is used to connect the points.
The formulas that result from taking the integrals under
such polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule/

» Results when a second-order interpolating polynomial
IS used.
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