Numerical Differentiation and Integration

- Standing in the heart of calculus are the mathematical concepts of differentiation and integration:

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x} \\
& \frac{d y}{d x}={ }_{\Delta x} \lim _{0} \frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x} \\
& I=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Figure 4.1

Figure 4.2

Noncomputer Methods for Differentiation and Integration

- The function to be differentiated or integrated will typically be in one of the following three forms:
- A simple continuous function such as polynomial, an exponential, or a trigonometric function.
- A complicated continuous function that is difficult or impossible to differentiate or integrate directly.
- A tabulated function where values of x and $f(x)$ are given at a number of discrete points, as is often the case with experimental or field data.

Figure 4.3

Figure 4.4

Newton-Cotes Integration Formulas

- The Newton-Cotes formulas are the most common numerical integration schemes.
- They are based on the strategy of replacing a complicated function or tabulated data with an approximating function that is easy to integrate:

$$
\begin{aligned}
& I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{n}(x) d x \\
& f_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}
\end{aligned}
$$

Figure 4.5

Figure 4.6

The Trapezoidal Rule

- The Trapezoidal rule is the first of the Newton-Cotes closed integration formulas, corresponding to the case where the polynomial is first order:

$$
I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{1}(x) d x
$$

- The area under this first order polynomial is an estimate of the integral of $f(x)$ between the limits of a and b :

$$
\left.I=(b-a) \frac{f(a)+f(b)}{2}\right\} \text { Trapezoidal rule }
$$

Figure 4.7

Error of the Trapezoidal Rule/

- When we employ the integral under a straight line segment to approximate the integral under a curve, error may be substantial:

$$
E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}
$$

where ξ lies somewhere in the interval from a to b.

The Multiple Application Trapezoidal Rule/

- One way to improve the accuracy of the trapezoidal rule is to divide the integration interval from a to b into a number of segments and apply the method to each segment.
- The areas of individual segments can then be added to yield the integral for the entire interval.

$$
h=\frac{b-a}{n} \quad a=x_{0} \quad b=x_{n}
$$

$$
I=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
$$

Substituting the trapezoidal rule for each integral yields:
$I=h \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+h \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}$

Figure 4.8

Simpson's Rules

- More accurate estimate of an integral is obtained if a high-order polynomial is used to connect the points. The formulas that result from taking the integrals under such polynomials are called Simpson's rules.

Simpson's 1/3 Rule/

- Results when a second-order interpolating polynomial is used.

Figure 4.9

(a)

(b)

$$
\begin{aligned}
& I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{2}(x) d x \\
& a=x_{0} \quad b=x_{2} \\
& I=\int_{x_{0}}^{x_{2}}\left[\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)\right] d x \\
& I \cong \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad h=\frac{b-a}{2}
\end{aligned}
$$

