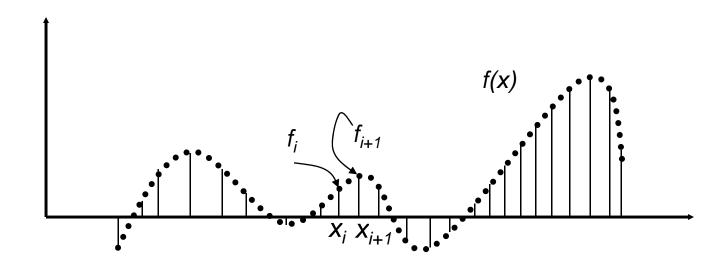
Interpolation

Taylor's Series and Interpolation

- Taylor Series interpolates at a specific point:
 - The function
 - Its first derivative
 - **...**
- It may not interpolate at other points.
- We want an interpolant at several f(c)'s.

Basic Scenario

- We are able to prod some function, but do not know what it really is.
- ▶ This gives us a list of data points: $[x_i, f_i]$



Interpolation & Curve-fitting

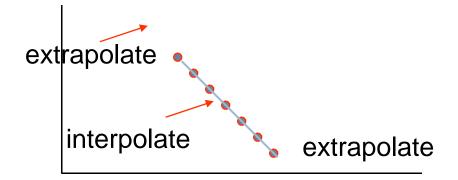
- Often, we have data sets from experimental/observational measurements
 - Typically, find that the data/dependent variable/output varies...
 - As the control parameter/independent variable/input varies. Examples:
 - Classic gravity drop: location changes with time
 - Pressure varies with depth
 - Wind speed varies with time
 - Temperature varies with location
- Scientific method: Given data identify underlying relationship
- Process known as curve fitting:

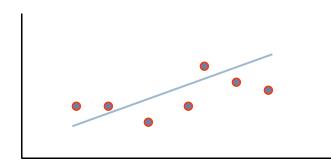
Interpolation & Curve-fitting

- ▶ Given a data set of n+1 points (x_i,y_i) identify a function f(x) (the curve), that is in some (well-defined) sense the best fit to the data
- Used for:
 - Identification of underlying relationship (modelling/prediction)
 - Interpolation (filling in the gaps)
 - Extrapolation (predicting outside the range of the data)

Interpolation Vs Regression

- Distinctly different approaches depending on the quality of the data
- Consider the pictures below:





Pretty confident:
there is a polynomial relationship
Little/no scatter
Want to find an expression
that passes exactly through all the points

Unsure what the relationship is
Clear scatter
Want to find an expression
that captures the trend:
minimize some measure of the error
Of all the points...

Interpolation

- Concentrate first on the case where we believe there is no error in the data (and round-off is assumed to be negligible).
- ▶ So we have $y_i = f(x_i)$ at n+1 points $x_0, x_1, ..., x_i, ..., x_n$: $x_j > x_{j-1}$
- (Often but not always evenly spaced)
- In general, we do not know the underlying function f(x)
- Conceptually, interpolation consists of two stages:
 - ▶ Develop a simple function g(x) that
 - Approximates f(x)
 - \triangleright Passes through all the points x_i

Interpolation

- Clearly, the crucial question is the selection of the simple functions g(x)
- Types are:
 - Polynomials
 - Splines
 - Trigonometric functions
 - Spectral functions...Rational functions etc...

Curve Approximation

- We will look at three possible approximations (time permitting):
 - Polynomial interpolation
 - Spline (polynomial) interpolation
 - Least-squares (polynomial) approximation
- If you know your function is periodic, then trigonometric functions may work better.
 - Fourier Transform and representations

Polynomial Interpolation

- Consider our data set of n+1 points $y_i = f(x_i)$ at n+1 points x_0, x_1, \dots, x_n at x_i > x_{j-1}
- In general, given n+1 points, there is a unique polynomial $g_n(x)$ of order n:

That passes through all n+1 points

$$g_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Polynomial Interpolation

- There are a variety of ways of expressing the same polynomial
- Lagrange interpolating polynomials
- Newton's divided difference interpolating polynomials
- We will look at both forms

Polynomial Interpolation

- Existence does there exist a polynomial that exactly passes through the n data points?
- Uniqueness Is there more than one such polynomial?
 - We will assume uniqueness for now and prove it latter.

Lagrange Polynomials

- Summation of terms, such that:
 - Equal to f() at a data point.
 - Equal to zero at all other data points.
 - Each term is a nthdegree polynomial

Existence!!!

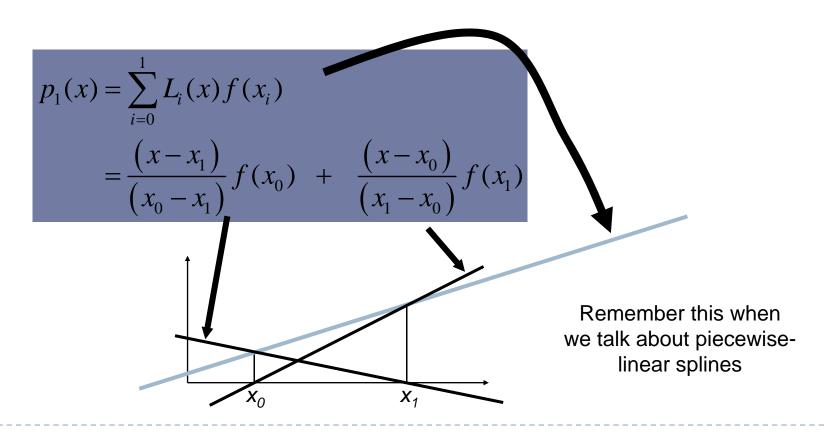
$$p_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

$$L_i(x) = \prod_{k=0, k \neq i}^n \frac{(x - x_k)}{(x_i - x_k)}$$

$$L_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Linear Interpolation

Summation of two lines:

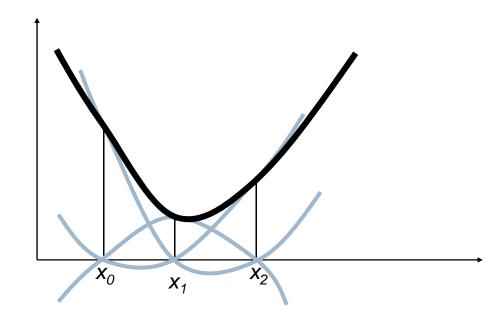


Lagrange Polynomials

▶ 2nd Order Case => quadratic polynomials

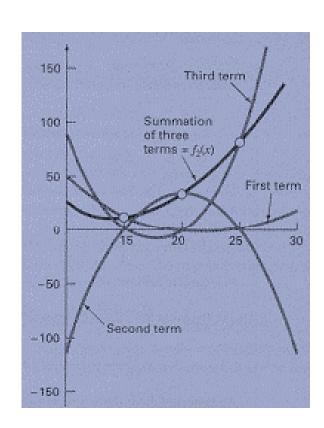
Adding them all together, we get the interpolating quadratic polynomial, such that:

- $P(x_0) = f_0$
- $P(x_1) = f_1$
- $P(x_2) = f_2$



Lagrange Polynomials

- Sum must be a unique 2nd order polynomial through all the data points.
- What is an efficient implementation?



Newton Interpolation

- Consider our data set of n+1 points $y_i = f(x_i)$ at x_0, x_1, \dots, x_n : $x_n > x_0$
- Since $p_n(x)$ is the unique polynomial $p_n(x)$ of order n, write it:

$$p_{n}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1}) + \dots + b_{n}(x - x_{0})(x - x_{1}) \cdots (x - x_{n-1})$$

$$b_{0} = f(x_{0})$$

$$b_{1} = f\left[x_{1}, x_{0}\right] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = f\left[x_{2}, x_{1}, x_{0}\right] = \frac{f\left[x_{2}, x_{1}\right] - f\left[x_{1}, x_{0}\right]}{x_{2} - x_{0}}$$

$$\vdots$$

$$b_{n} = f\left[x_{n}, x_{n-1}, \dots, x_{0}\right] = \frac{f\left[x_{n}, \dots, x_{1}\right] - f\left[x_{n-1}, \dots, x_{0}\right]}{x_{n} - x_{0}}$$

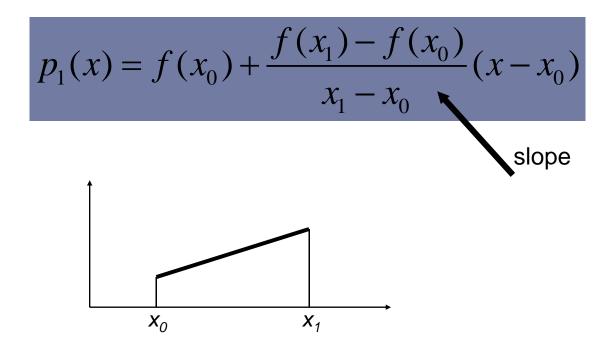
- $f[x_2,x_1,x_0]$ is a second divided difference, etc.

Invariance Theorem

- Note, that the order of the data points does not matter.
- All that is required is that the data points are distinct.
- ▶ Hence, the divided difference $f[x_{0_i}, x_{1_i}, ..., x_k]$ is invariant under all permutations of the x_i 's.

Linear Interpolation

Simple linear interpolation results from having only 2 data points.



Quadratic Interpolation

Three data points:

$$p_{2}(x) = f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1})$$

$$= f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0}) + \frac{\left[\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}}\right] - \left[\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}\right]}{x_{2} - x_{0}}(x - x_{0})(x - x_{1})$$

$$= f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0})$$

$$+ \frac{\left[\left[\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}}(x - x_{1})\right](x - x_{0})\right] - \left[\left[\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0})\right](x - x_{1})\right]}{x_{2} - x_{0}}$$

Newton Interpolation

Let's look at the recursion formula:

For the quadratic term:

$$b_{n} = f[x_{n}, x_{n-1}, ..., x_{0}] = \frac{f[x_{n}, ..., x_{1}] - f[x_{n-1}, ..., x_{0}]}{x_{n} - x_{0}}$$
where
$$f[x_{i}] = f(x_{i})$$

$$b_{2} = f\left[x_{2}, x_{1}, x_{0}\right] = \frac{f\left[x_{2}, x_{1}\right] - f\left[x_{1}, x_{0}\right]}{x_{2} - x_{0}} = \frac{\frac{f\left(x_{2}\right) - f\left(x_{1}\right)}{x_{2} - x_{1}} - \frac{f\left(x_{1}\right) - f\left(x_{0}\right)}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$

$$= \frac{\frac{f\left(x_{2}\right) - f\left(x_{1}\right)}{x_{2} - x_{0}} - b_{1}}{x_{2} - x_{0}}$$

Evaluating for x_2

$$f(x_2) = b_0 + b_1(x_2 - x_0) + b_2(x_2 - x_0)(x_2 - x_1)$$

$$= f_0 + b_1(x_2 - x_0) + \underbrace{\left(f_2 - f_1 - b_1\right)}_{x_2}(x_2 - x_1)$$

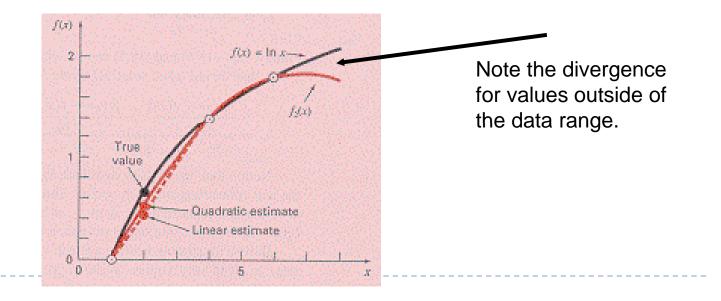
$$= f_0 + b_1(x_1 - x_0) + f_2 - f_1$$

$$= f_0 + \underbrace{\left(\frac{f_1 - f_0}{x_0}\right)}_{x_1} + f_2 - f_1$$

$$= f_2$$

Example: ln(x)

- Interpolation of In(2): given In(1); In(4) and In(6)
 - Data points: {(1,0), (4,1.3863), (6,1.79176)}
 - Linear Interpolation: $0 + \{(1.3863-0)/(4-1)\}(x-1) = 0.4621(x-1)$
 - Quadratic Interpolation: 0.4621(x-1)+((0.20273-0.4621)/5)/(c) 4) = 0.4621(x-1) - 0.051874 (x-1)(x-4)



Example: ln(x)

- Quadratic interpolation catches some of the curvature
- Improves the result somewhat
- Not always a good idea: see later...

- A divided-difference table can easily be constructed incrementally.
- \triangleright Consider the function In(x).

X	In(x)
1	0.000000
2	0.693147
3	1.098612
4	1.386294
5	1.609438
6	1.791759
7	1.945910
8	2.079442
Х	ln(x)

X	ln(x)	f[l,l+1]	
1	0.000000		
2	0.693147	0.693147	
3	1.098612	0.405465	f(x) = f(x)
4	1.386294	0.287682	$f[i.i+1] = \frac{f(x_{i+1}) - f(x_i)}{(x_i + x_i)}$
5	1.609438	0.223144	$\left(x_{i+1}-x_i\right)$
6	1.791759	0.182322	(x_{i+1}, x_i)
7	1.945910	0.154151	
8	2.079442	0.133531	
Х	ln(x)	b10-b9)/(A10-A9	

X	ln(x)	f[l,l+1]		
1	0.000000			
2	0.693147	0.693147		
3	1.098612	0.405465	-0.143841	$f[i.i+1,i+2] = \frac{f[i+1,i+2]-f[i,i+1]}{(x-x)}$
4	1.386294	0.287682	-0.058892	$f[ii+1i+2]-\frac{J[i+1,i+2]-J[i,i+1]}{I}$
5	1.609438	0.223144	-0.032269	
6	1.791759	0.182322	-0.020411	$(x_{i+2}-x_i)$
7	1.945910	0.154151	-0.014085	
8	2.079442	0.133531	-0.010310	
х	ln(x)	b10-b9)/(A10-A9	(c10-c9)/(a10-a8	

$$f[i,...,i+3] = \frac{f[i+1,i+2,i+3] - f[i,i+1,i+2]}{(x_{i+3} - x_i)}$$

X	In(x)	f[l,l+1]		
1	0.000000			
2	0.693147	0.693147		
3	1.098612	0.405465	-0.143841	
4	1.386294	0.287682	-0.058892	0.028317
5	1.609438	0.223144	-0.032269	0.008874
6	1.791759	0.182322	-0.020411	0.003953
7	1.945910	0.154151	-0.014085	0.002109
8	2.079442	0.133531	-0.010310	0.001259
Х	ln(x)	b10-b9)/(A10-A9	c10-c9)/(a10-a8	d10-d9)/(a10-a7

$$f[i,...,i+4] = \frac{f[i+1,...,i+4] - f[i,...,i+3]}{(x_{i+4} - x_i)}$$

X	In(x)	f[I,I+1]			
1	0.000000				
2	0.693147	0.693147			
3	1.098612	0.405465	-0.143841		
4	1.386294	0.287682	-0.058892	0.028317	
5	1.609438	0.223144	-0.032269	0.008874	-0.004861
6	1.791759	0.182322	-0.020411	0.003953	-0.001230
7	1.945910	0.154151	-0.014085	0.002109	-0.000461
8	2.079442	0.133531	-0.010310	0.001259	-0.000212
Х	ln(x)	b10-b9)/(A10-A9	c10-c9)/(a10-a8	d10-d9)/(a10-a7	d10-d9)/(a10-a6

$$f[i,...,i+5] = \frac{f[i+1,...,i+5]-f[i,...,i+4]}{(x_{i+5}-x_i)}$$

X	In(x)	f[l,l+1]				
1	0.000000					
2	0.693147	0.693147				
3	1.098612	0.405465	-0.143841			
4	1.386294	0.287682	-0.058892	0.028317		
5	1.609438	0.223144	-0.032269	0.008874	-0.004861	
6	1.791759	0.182322	-0.020411	0.003953	-0.001230	0.000726
7	1.945910	0.154151	-0.014085	0.002109	-0.000461	0.000154
8	2.079442	0.133531	-0.010310	0.001259	-0.000212	0.000050
Х	ln(x)	b10-b9)/(A10-A9(c10-c9)/(a10-a8	d10-d9)/(a10-a7	d10-d9)/(a10-a6	e10-e9)/(a10-a5

$$f[i,...,i+6] = \frac{f[i+1,...,i+6]-f[i,...,i+5]}{(x_{i+6}-x_i)}$$

X	In(x)	f[I,I+1]					
1	0.000000						
2	0.693147	0.693147					
3	1.098612	0.405465	-0.143841				
4	1.386294	0.287682	-0.058892	0.028317			
5	1.609438	0.223144	-0.032269	0.008874	-0.004861		
6	1.791759	0.182322	-0.020411	0.003953	-0.001230	0.000726	
7	1.945910	0.154151	-0.014085	0.002109	-0.000461	0.000154	-0.000095
8	2.079442	0.133531	-0.010310	0.001259	-0.000212	0.000050	-0.000017
Х	ln(x)	b10-b9)/(A10-A9(c10-c9)/(a10-a8	d10-d9)/(a10-a7	d10-d9)/(a10-a6	e10-e9)/(a10-a5	10-f9)/(a10-a4

Finally, we can calculate the last coefficient.

$$f[i,...,i+7] = \frac{f[i+1,...,i+7]-f[i,...,i+6]}{(x_{i+7}-x_i)}$$

X	In(x)	f[l,l+1]						f[l,l+1,,l+7]
1	0.000000							
2	0.693147	0.693147						
3	1.098612	0.405465	-0.143841					
4	1.386294	0.287682	-0.058892	0.028317				
5	1.609438	0.223144	-0.032269	0.008874	-0.004861			
6	1.791759	0.182322	-0.020411	0.003953	-0.001230	0.000726		
7	1.945910	0.154151	-0.014085	0.002109	-0.000461	0.000154	-0.000095	
8	2.079442	0.133531	-0.010310	0.001259	-0.000212	0.000050	-0.000017	0.000011
Х	ln(x)	b10-b9)/(A10-A9	(c10-c9)/(a10-a8	d10-d9)/(a10-a7	d10-d9)/(a10-a6	e10-e9)/(a10-a5	f10-f9)/(a10-a4	(g10-g9)/(a10-a3)

 All of the coefficients for the resulting polynomial are in

bo	ld.	,			D ₄	,			
X	In(x)	f[l,l+1]						f[l,l+1,,l+7]	
1	0.000000								
2	0.693147	0.693147							
3	1.098612	0.405465	-0.143841						
4	1.386294	0.287682	-0.058892	0.028317	+				
5	1.609438	0.223144	-0.032269	0.008874	-0.004861				
6	1.791759	0.182322	-0.020411	0.003953	-0.001230	0.000726			
7	1.945910	0.154151	-0.014085	0.002109	-0.000461	0.000154	-0.000095		
8	2.079442	0.133531	-0.010310	0.001259	-0.000212	0.000050	-0.000017	0.000011	>
Х	ln(x)	b10-b9)/(A10-A9	c10-c9)/(a10-a8	d10-d9)/(a10-a7	d10-d9)/(a10-a6	e10-e9)/(a10-a5	f10-f9)/(a10-a4	(g10-g9)/(a10-a3)	

Polynomial Form for Divided-Differences

The resulting polynomial comes from the divideddifferences and the corresponding product terms:

$$p_{7}(x) = 0$$

$$+0.693(x-1)$$

$$-0.144(x-1)(x-2)$$

$$+0.28(x-1)(x-2)(x-3)$$

$$-0.0049(x-1)(x-2)(x-3)(x-4)$$

$$+7.26 \cdot 10^{-4}(x-1)(x-2)(x-3)(x-4)(x-5)$$

$$-9.5 \cdot 10^{-5}(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$$

$$+1.1 \cdot 10^{-5}(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)$$

Many polynomials

- Note, that the order of the numbers (x_i, y_i) 's only matters when writing the polynomial down.
 - The first column represents the set of linear splines between two adjacent data points.
 - The second column gives us quadratics thru three adjacent points.
 - Etc.

Adding an Additional Data Point

- Adding an additional data point, simply adds an additional term to the existing polynomial.
 - ▶ Hence, only n additional divided-differences need to be calculated for the $n+1^{st}$ data point.

X	ln(x)	f[l,l+1]					1	[I,I+1,,I+7]		
1.0000000	0.0000000									I _
2.0000000	0.6931472	0.6931472								b_8
3.0000000	1.0986123	0.4054651	-0.1438410							,
4.0000000	1.3862944	0.2876821	-0.0588915	0.0283165						
5.0000000	1.6094379	0.2231436	-0.0322693	0.0088741	-0.0048606					
6.0000000	1.7917595	0.1823216	-0.0204110	0.0039528	-0.0012303	0.0007261				
7.0000000	1.9459101	0.1541507	-0.0140854	0.0021085	-0.0004611	0.0001539	-0.0000954			
8.0000000	2.0794415	0.1335314	-0.0103096	0.0012586	-0.0002125	0.0000497	-0.0000174	0.0000111		
1.5000000	0.4054651	0.2575348	-0.0225461	0.0027192	-0.0004173	0.0000819	-0.0000215	0.0000082	-0.000058	>

Adding More Data Points

- Quadratic interpolation:
 - does linear interpolation
 - Then add higher-order correction to catch the curvature
- ▶ Cubic, ...
- Consider the case where the data points are organized such the the first two are the endpoints, the next point is the mid-point, followed by successive mid-points of the halfintervals.
 - Worksheet: $f(x)=x^2$ from -1 to 3.

Uniqueness

- Suppose that two polynomials of degree n (or less) existed that interpolated to the n+1 data points.
- Subtracting these two polynomials from each other also leads to a polynomial of at most n degree.

$$r_n(x) = p_n(x) - q_n(x)$$

Uniqueness

- ▶ Since p and q both interpolate the n+1 data points,
- ▶ This polynomial r, has at least n+1 roots!!!
- This can not be! A polynomial of degree-n can only have at most n roots.
- ▶ Therefore, $r(x) \equiv 0$

$$p_{n}(x) = a_{n} \prod_{i=1}^{n} (x - r_{i})$$

$$p_{n+1}(x) = a_{n+1} \prod_{i=1}^{n+1} (x - r_{i})$$

Example

- Suppose f was a polynomial of degree m, where m<n.</p>
- Ex: f(x) = 3x-2
- We have evaluations of f(x) at five locations: (-2,-8),
 (-1,-5), (0,-2), (1,1), (2,4)

Error

Define the error term as:

$$\varepsilon_n(x) = f(x) - p_n(x)$$

- If f(x) is an n^{th} order polynomial $p_n(x)$ is of course exact.
- ▶ Otherwise, since there is a perfect match at $x_0, x_1, ..., x_n$
- ▶ This function has at least n+1 roots at the interpolation points.

$$\therefore \varepsilon_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n)h(x)$$

Interpolation Errors

$$\mathcal{E}_{n}(x) = f(x) - p_{n}(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_{i})$$

$$x \in [a,b], \xi \in (a,b)$$

Intuitively, the first *n*+1 terms of the Taylor Series is also an *n*th degree polynomial.

Interpolation Errors

Use the point x, to expand the polynomial.

$$x \notin \{x_0, x_1, \dots x_n\}$$

$$\varepsilon_n(x) = f(x) - p_n(x) = f[x_0, x_1, \dots x_n, x] \prod_{i=0}^n (x - x_i)$$

Point is, we can take an arbitrary point x, and create an (n+1)th polynomial that goes thru the point x.

Interpolation Errors

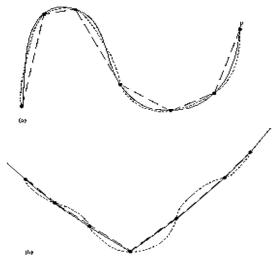
Combining the last two statements, we can also get a feel for what these divided differences represent.

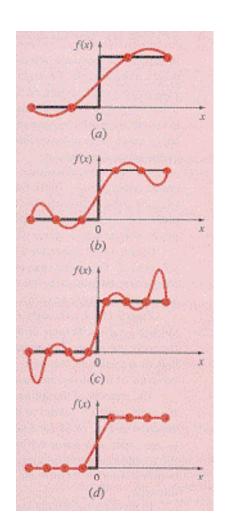
$$f[x_0, x_1, \dots x_n] = \frac{1}{n!} f^{(n)}(\xi)$$
> Corollary 1 in book – If $f(x)$ is a polynomial of degree

Corollary 1 in book – If t(x) is a polynomial of degree m<n, then all (m+1)st divided differences and higher are zero.

Problems with Interpolation

- Is it always a good idea to use higher and higher order polynomials?
- Certainly not: 3-4 points usually good: 5-6 ok:
- See tendency of polynomial to "wiggle"
- Particularly for sharp edges: see figures





Chebyshev nodes

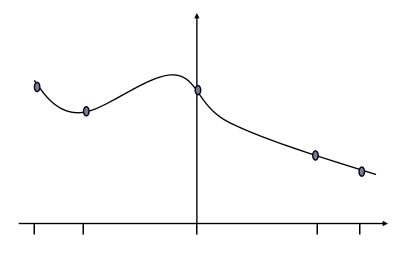
- Equally distributed points may not be the optimal solution.
- If you could select the x_i 's, what would they be?
- Want to minimize the term.
- These are the Chebyshev nodes.
 - For x=-1 to 1:

$$\prod_{i=0}^{n} \left(x - x_i \right)$$

$$x_i = \cos\left[\left(\frac{i}{n}\right)\pi\right], (0 \le i \le n)$$

Chebyshev nodes

- ▶ Let's look at these for n=4.
- Spreads the points out in the center.



$$x_{0} = \cos\left[\left(\frac{0}{4}\right)\pi\right] = 1$$

$$x_{1} = \cos\left[\left(\frac{1}{4}\right)\pi\right] = \frac{\sqrt{2}}{2} \approx 0.707$$

$$x = \cos\left[\left(\frac{2}{4}\right)\pi\right] = 0$$

$$x_{3} = \cos\left[\left(\frac{3}{4}\right)\pi\right] = -\frac{\sqrt{2}}{2} \approx -0.707$$

$$x_{4} = \cos\left[\left(\frac{4}{4}\right)\pi\right] = -1$$

Polynomial Interpolation in Two-Dimensions

Consider the case in higher-dimensions.

Finding the Inverse of a Function

- \blacktriangleright What if I am after the inverse of the function f(x)?
 - For example arccos(x).
- Simply reverse the role of the x_i and the f_i.