Interpolation




Taylor’s Series and Interpolation

» Taylor Series interpolates at a specific point:
The function
Its first derivative

» It may not interpolate at other points.
» We want an interpolant at several f(c)’s.



Basic Scenario

» We are able to prod some function, but do not know
what it really is.

» This gives us a list of data points: [x;f]

f(x)

X| X|+1




Interpolation & Curve-fitting

» Often, we have data sets from
experimental/observational measurements
» Typically, find that the data/dependent variable/output varies...

» As the control parameter/independent variable/input varies.
Examples:

Classic gravity drop: location changes with time
Pressure varies with depth

Wind speed varies with time

Temperature varies with location

» Scientific method: Given data identify underlying
relationship

» Process known as curve fitting:



Interpolation & Curve-fitting

» Given a data set of n+1 points (x,y;) identify a function
f(x) (the curve), that is in some (well-defined) sense the
pest fit to the data

» Used for:

|dentification of underlying relationship
(modelling/prediction)

Interpolation (filling in the gaps)
Extrapolation (predicting outside the range of the data)



Interpolation Vs Regression

» Distinctly different approaches depending on the quality

of the data
» Consider the pictures below:

/
extrapolate e )
/ @ Y
Interpolate "o extrapolate
Pretty confident: ol

there is a polynomial relationship
Little/no scatter
Want to find an expression
that passes exactly through all the points
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Unsure what the relationship is
Clear scatter
Want to find an expression
that captures the trend:
minimize some measure of the error
Of all the points...



Interpolation
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Concentrate first on the case where we believe there is
no error in the data (and round-off is assumed to be
negligible).

So we have y=f(x;) at n+1 points Xp,X;...X;,... Xy X > X 4
(Often but not always evenly spaced)

In general, we do not know the underlying function f(x)

Conceptually, interpolation consists of two stages:

Develop a simple function g(x) that
Approximates f(x)
Passes through all the points x;
Evaluate f(x,) where X, < X, < X,



Interpolation

» Clearly, the crucial question is the selection of
the simple functions g(x)

» Types are:
Polynomials
Splines
Trigonometric functions
Spectral functions...Rational functions etc...



Curve Approximation

» We will look at three possible approximations (time
permitting):
Polynomial interpolation
Spline (polynomial) interpolation
Least-squares (polynomial) approximation
» If you know your function is periodic, then
trigonometric functions may work better.
Fourier Transform and representations



Polynomial Interpolation

» Consider our data set of n+1 points y,=f(x)) at n+1
POINtS Xg,X; ... Xjy- - Xp! Xj > X g

» In general, given n+1 points, there Is a unique
polynomial g,(x) of order n:

» That passes through all n+1 points
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Polynomial Interpolation

» There are a variety of ways of expressing the same
polynomial

» Lagrange interpolating polynomials

» Newton'’s divided difference interpolating polynomials
» We will look at both forms
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Polynomial Interpolation

» EXxistence — does there exist a polynomial that
exactly passes through the n data points?

» Unigueness — Is there more than one such
polynomial?
We will assume uniqueness for now and prove it latter.
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Lagrange Polynomials

» Summation of terms, such that:

» Equal to f() at a data
point.

» Equal to zero at all
other data points.

» Each term is a nt-
degree polynomial

Existence!!!




Linear Interpolation

» Summation of two lines:

Remember this when
we talk about piecewise-
linear splines




Lagrange Polynomials

» 2"d Order Case => quadratic polynomials




Lagrange Polynomials

» Sum must be a unique 2"9 order
polynomial through all the data
points.

» What is an efficient
Implementation?




Newton Interpolation

> Consider our data set of n+1 points y=f(x) at X,X;...X;,...Xy: X, > Xg
> Since p,(x) is the unique polynomial p,(x) of order n, write it:

> f{x;,x] Is a first divided difference
> f[X,,X1,Xo] Is @ second divided difference, etc.



Invariance Theorem

» Note, that the order of the data points does not
matter.

» All that Is required is that the data points are distinct.

» Hence, the divided difference f[x, X; ... X, ] Is
iInvariant under all permutations of the x;'s.
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Linear Interpolation

» Simple linear interpolation results from having only 2
data points.

slope
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Quadratic Interpolation

» Three data points:




Newton Interpolation

» Let’s look at the recursion formula:

» For the quadratic term:




Evaluating for x,




Example: In(x)

» Interpolation of In(2): given In(1); In(4) and In(6)
Data points: {(1,0), (4,1.3863), (6,1.79176)}
Linear Interpolation: O + {(1.3863-0)/(4-1)}(x-1) = 0.4621(

Quadratic Interpolation: 0.4621(x-1)+((0.20273-0.4621)/5
= 0.4621(x-1) - 0.051874 (x-1)(x-4)

—1

Note the divergence
for values outside of
the data range.
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Example: In(x)

» Quadratic interpolation catches some
of the curvature
» Improves the result somewhat

» Not always a good idea: see later...
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Calculating the
Divided-Differences

» A divided-difference table can easily be constructed
Incrementally.

» Consider the function In(x).

In(x)

0.000000
0.693147
1.098612
1.386294
1.609438
1.791759
1.945910

2.079442
In(x)

X 00N O~ WNPREX
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Calculating the
Divided-Differences

In(x) f[1,1+1]
0.000000

0.693147  0.693147
1.008612  0.405465
1.386294  0.287682
1.609438  0.223144
1.791759  0.182322
1.945910  0.154151

2.079442 0.133531
In(x) b10-b9)/(A10-A9

X 00N O~ WNPREX
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Calculating the

Divided-Differences
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X 00N O~ WNPREX

In(x)
0.000000
0.693147
1.098612
1.386294
1.609438
1.791759
1.945910

2.079442
In(x)

f[1,1+1]

0.693147
0.405465
0.287682
0.223144
0.182322
0.154151
0.133531

b10-b9)/(A10-A9c10-c9)/(al0-a8

-0.143841
-0.058892
-0.032269
-0.020411
-0.014085
-0.010310



Calculating the
Divided-Differences

In(x) f[1,1+1]
0.000000

0.693147  0.693147

1.008612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317
1.609438  0.223144  -0.032269  0.008874
1.791759  0.182322  -0.020411  0.003953
1.945910  0.154151  -0.014085  0.002109

2.079442 0.133531 -0.010310 0.001259
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7

X 00N O~ WNPREX
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Calculating the
Divided-Differences

In(x) f[1,1+1]

0.000000

0.693147  0.693147

1.008612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317

1.609438  0.223144  -0.032269  0.008874  -0.004861
1.791759  0.182322  -0.020411  0.003953  -0.001230
1.945910  0.154151  -0.014085 0.002109  -0.000461

2.079442 0.133531 -0.010310 0.001259 -0.000212
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-af

X 00N O~ WNPREX
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Calculating the
Divided-Differences

In(x) f[1,1+1]

0.000000

0.693147  0.693147

1.008612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317

1.609438  0.223144  -0.032269  0.008874  -0.004861

1.791759  0.182322  -0.020411 0.003953 -0.001230  0.000726
1.945910  0.154151  -0.014085 0.002109 -0.000461  0.000154

2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(a10-a6el0-e9)/(al0-at

X 00N O~ WNPREX
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Calculating the
Divided-Differences

In(x) f[1,1+1]

0.000000

0.693147  0.693147

1.098612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317

1.609438  0.223144  -0.032269  0.008874  -0.004861

1.791759  0.182322  -0.020411 0.003953 -0.001230  0.000726
1.945010  0.154151  -0.014085 0.002109 -0.000461  0.000154 -0.000095

2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050| -0.000017
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(a10-a6el0-e9)/(al0-atf10-f9)/(al0-a4

X 0N O WNPRE X
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Calculating the
Divided-Differences

» Finally, we can calculate the last coefficient.

X In(x) f1,1+1] flI,1+1,...,1+7]
1 0.000000

2 0.693147 0.693147

3 1.098612 0.405465 -0.143841

4 1.386294 0.287682 -0.058892 0.028317

5 1.609438 0.223144 -0.032269 0.008874 -0.004861

6 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726

7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095

8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000011
X In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-a6el0-e9)/(al0-atf10-f9)/(al0-a4 (gl0-g9)/(al0-a3)
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Calculating the

Divided-Differences

» All of the coefficients
for the resulting
polynomjal are in

bold. /
X In(x) f[I,1+1]
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1
2
3
4
5
6
7
8
X

0.693147 0.693147
1.098612 0.405465
1.386294 0.287682
1.609438 0.223144
1.791759 0.182322
1.945910 0.154151
2.079442 0.133531

In(x)

-0.143841
-0.058892
-0.032269
-0.020411
-0.014085
-0.010310

0.028317
0.008874
0.003953 -0.001230
0.002109  -0.000461
0.001259  -0.000212

0.000726
0.000154
0.000050

-0.000095
-0.000017

fll,1+1,...,1+7]

0.000011

b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-a6el0-e9)/(al0-atf10-f9)/(al0-a4 (gl0-g9)/(al0-a3)

b

v



Polynomial Form for Divided-
Differences

» The resulting polynomial comes from the divided-
differences and the corresponding product terms:

p7(X)=0
+0.693(x—1)
—0.144(x-1)(x-2)
+0.28(x-1)(x—2)(x—3)
—0.0049(x—1)(x—2)(x-3)(x—4)

+7.260107* (x—1)(x—2)(x—3)(x—4)(x~-5)
—9.50107 (x—1)(x—2)(x—3)(x—4)(x-5)(x—6)
+1.10107 (x—1)(x—2)(x—3)(x—4)(x—5)(x—6)(x—7)

3
3
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Many polynomials

» Note, that the order of the numbers (x,y;)'s only
matters when writing the polynomial down.

The first column represents the set of linear splines
between two adjacent data points.

The second column gives us quadratics thru three
adjacent points.

Etc.
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Adding an Additional Data Point

» Adding an additional data point, simply adds an
additional term to the existing polynomial.
Hence, only n additional divided-differences need to be

36

calculated for the n+1% data point.

X
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
1.5000000

In(x)
0.0000000
0.6931472
1.0986123
1.3862944
1.6094379
1.7917595
1.9459101
2.0794415
0.4054651

f1,1+1]

0.6931472
0.4054651
0.2876821
0.2231436
0.1823216
0.1541507
0.1335314
0.2575348

-0.1438410
-0.0588915
-0.0322693
-0.0204110
-0.0140854
-0.0103096
-0.0225461

0.0283165
0.0088741
0.0039528
0.0021085
0.0012586
0.0027192

-0.0048606
-0.0012303
-0.0004611
-0.0002125
-0.0004173

0.0007261
0.0001539
0.0000497
0.0000819

fll,1+1,...,1+7]

-0.0000954
-0.0000174 0.0000111
-0.0000215  0.0000082

-0.0000058



Adding More Data Points

» Quadratic interpolation:
does linear interpolation

Then add higher-order correction to catch the curvature
» Cubic, ...

» Consider the case where the data points are
organized such the the first two are the
endpoints, the next point is the mid-point,
followed by successive mid-points of the half-
Intervals.

Worksheet: f(x)=x? from -1 to 3.
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Uniqueness

» Suppose that two polynomials of degree n (or less)
existed that interpolated to the n+1 data points.

» Subtracting these two polynomials from each other
also leads to a polynomial of at most n degree.
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Uniqueness

» Since p and g both interpolate the n+1 data points,
» This polynomial r, has at least n+1 roots!!!

» This can not be! A polynomial of degree-n can only
have at most n roots.

» Therefore, r(x) =0
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Example

» Suppose f was a polynomial of degree m, where
m<n.

» EX: f(X) = 3x-2

» We have evaluations of f(x) at five locations: (-2,-8),

(-1,-5), (0,-2), (1,1), (2,4)
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Error

» Define the error term as:

» If f(x) is an nt2 order polynomial p,(x) is of course exact.
» Otherwise, since there Is a perfect match at x,, X4,...,X,

» This function has at least n+1 roots at the interpolation
points.
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Interpolation Errors

» Intuitively, the first n+1 terms of the Taylor Series is
also an n degree polynomial.



Interpolation Errors

» Use the point x, to expand the polynomial.

» Point is, we can take an arbitrary point X, and create
an (n+1)t polynomial that goes thru the point x.



Interpolation Errors

» Combining the last two statements, we can also get
a feel for what these divided differences represent.

» Corollary X) 1S a polynomial of degree
m<n, then all (m+1)s! divided differences and higher
are zero.

44



Problems with Interpolation
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Is it always a good idea to use higher and higher
order polynomials?

Certainly not: 3-4 points usually good: 5-6 ok:
See tendency of polynomial to “wiggle”
Particularly for sharp edges: see figures




Chebyshev nodes

» Equally distributed points may not be the optimal
solution.

» If you could select the x;'s, what would they be?

» Want to minimize the term.
» These are the Chebyshev nodes.
For x=-1to 1.
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Chebyshev nodes

» Let’s look at these for n=4.

» Spreads the points out In
the center.




Polynomial Interpolation in
Two-Dimensions

» Consider the case in higher-dimensions.
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Finding the Inverse of a Function

» What if | am after the inverse of the function f(x)?
For example arccos(x).

» Simply reverse the role of the x; and the f.
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