Ordinary Differential Equations

« Equations which are composed of an unknown
function and its derivatives are called differential
eguations.

 Differential equations play a fundamental role Iin
engineering because many physical phenomena are
best formulated mathematically in terms of their rate
of change.

dv . C y v- dependent variable
dt m t- independent variable




* When a function involves one dependent variable, the
equation Is called an ordinary differential equation
(or ODE). A partial differential equation (or PDE)
Involves two or more independent variables.

 Differential equations are also classified as to their
order.

— Afirst order equation includes a first derivative as its
highest derivative.

— A second order equation includes a second derivative.

« Higher order equations can be reduced to a system of
first order equations, by redefining a variable.



ODEs and Engineering Practice
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Runga-Kutta Methods

 This chapter is devoted to solving ordinary
differential equations of the form

dy
— = f (X,
i (X, )

Euler’s Method
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* The first derivative provides a direct estimate of the
slope at x;

)= f(xi’yi)

where f(x;,y;) Is the differential equation evaluated at
x; and y;. This estimate can be substituted into the
equation:

Viie = Yi + (X, y;)h

* Anew value of y Is predicted using the slope to
extrapolate linearly over the step size h.



% = f(%,y) =—2x° +12x* — 20X +8.5
X

Starting point x,=0, y,=1

Yin =Y+ f (X, y;)h=1+8.5%0.5=5.25

Not good

True solution




Error Analysis for Euler’s Method/
* Numerical solutions of ODEs involves two types of

error.

— Truncation error
» Local truncation error

Ea _ f (Xi’yi) h2
2!
E =0(h?)

» Propagated truncation error
— The sum of the two is the total or global truncation error
— Round-off errors



* The Taylor series provides a means of quantifying the
error in Euler’s method. However;

— The Taylor series provides only an estimate of the local
truncation error-that is, the error created during a single
step of the method.

— In actual problems, the functions are more complicated
than simple polynomials. Consequently, the derivatives
needed to evaluate the Taylor series expansion would not
always be easy to obtain.

 In conclusion,
— the error can be reduced by reducing the step size

— If the solution to the differential equation is linear, the
method will provide error free predictions as for a straight
line the 2"d derivative would be zero.
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Improvements of Euler’s method

o A fundamental source of error in Euler’s
method Is that the derivative at the beginning

of the interval Is assumed to apply across the
entire interval.

 Two simple modifications are available to
circumvent this shortcoming:

— Heun’s Method
— The Midpoint (or Improved Polygon) Method




Heun’s Method/

e One method to improve the estimate of the slope
Involves the determination of two derivatives for the
Interval:

— At the initial point
— At the end point

e The two derivatives are then averaged to obtain an
Improved estimate of the slope for the entire interval.

Predictor: y>, =y + f(x,y)h

fOx,y)+ (X Yio+1) h
2

Corrector: y.., =YV, +
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The Midpoint (or Improved Polygon) Method/

» Uses Euler’s method t predict a value of y at the
midpoint of the interval:

Viee = Y + T (Xis020 Yiaas2)h
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Runge-Kutta Methods (RK)

* Runge-Kutta methods achieve the accuracy of a
Taylor series approach without requiring the
calculation of higher derivatives.

Yia =Y +6(%, y;, h)h

¢ — aikl +a, k2 4o ankn Increment function

a's = constants

k1 = f (Xi’ Yi)

k2 = f ()(i 4+ plh, Y. + qllklh) p’s and q’s are constants

ks = f (Xi + p3h, Yi + C|21k1h + qzzkzh)

kn = f (Xi + pn—lh’ Yi + qn—lklh + qn—l,2k2h Tt qn—l,n—lkn—lh)



k’s are recurrence functions. Because each k i1s a functional
evaluation, this recurrence makes RK methods efficient for
computer calculations.

Various types of RK methods can be devised by employing
different number of terms in the increment function as
specified by n.

First order RK method with n=1 is in fact Euler’s method.
Once n Is chosen, values of a’s, p’s, and g’s are evaluated by

setting general equation equal to terms in a Taylor series
expansion.

Yina=Yit (a1k1 + azkz)h



» \alues of a,, a,, p;, and q,, are evaluated by setting
the second order equation to Taylor series expansion
to the second order term. Three equations to evaluate

four unknowns constants are derived.
We have:y., =Y +(ak, +a,k,)h

However y,, =y, + T (X, y;)h + f ();I’ 2 h*

a0y, o (%,3,) dy

But f'(x,V,
(X, ¥;) - Y
2
Then yi+1:yi+f(xi1yi)h+ af(xi’yi)_i_al:(xivyi) dy h
OX oy dx|2!

k= T(X, V)
K, = T(X + p.h, y; +0y.k;h)
We now expand k, = f (x, + p;h, y, +0,,k;h)

af Xi! i af Xi’ i
K, =f(x,y;)+ (6Xy)p1h+ (ayy)chlklh



Vi = Y +(ak, +a,k;)h
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Because we can choose an infinite number of values
for a,, there are an infinite number of second-order RK
methods.

Every version would yield exactly the same results if
the solution to ODE were quadratic, linear, or a
constant.

However, they yield different results if the solution is
more complicated (typically the case).

Three of the most commonly used methods are:

— Huen Method with a Single Corrector (a,=1/2)
— The Midpoint Method (a,=1)
— Raltson’s Method (a,=2/3)
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