Keys, Couplings and Seals

Objectives:

•How attach power transmission components to shaft to prevent rotation and axial motion?

Torque resistance: keys, splines, pins, weld, press fit, etc..

Axial positioning: retaining rings, locking collars, shoulders machined into shaft, etc....

•What is the purpose of rigid and flexible couplings in a power transmission system?

•Specify seals for shafts and other types of machine elements.

11.2 Keys

Most common for shafts up to 6.5" is the square and rectangular keys:

Advantages:

- 1. Cost effective means of locking the
- 2. Can replace damaged component
- 3. Ease of installation

Figure 11.1

4. Can use key as "fuse" – fails in shear at some predetermined torque to avoid damaging drive train.

Square and rectangular keys:

Nominal s	haft diameter	Nominal key size				
			Height, H			
Over	To (incl.)	Width, W	Square	Rectangular		
5/16	7/16	3/32	3/32			
7/16	9/16	1/8	1/8	3/32		
9/16	7/8	3/16	3/16	1/8		
7/8	$1\frac{1}{4}$	1/4	1/4	3/16		
11	$1\frac{3}{8}$	5/16	5/16	1/4		
13	$1\frac{3}{4}$	3/8	3/8	1/4		
13	$2\frac{1}{4}$	1/2	1/2	3/8		
24	$2\frac{3}{4}$	5/8	5/8	7/16		
$2\frac{3}{4}$	$3\frac{1}{4}$	3/4	3/4	1/2		
34	34	7/8	7/8	5/8		
34	$4^{\frac{1}{2}}$	1	1	3/4		
$4^{\frac{1}{2}}$	$5\frac{1}{2}$	$1^{\frac{1}{4}}$	$1\frac{1}{4}$	7/8		
51	$6^{\frac{1}{2}}$	$1\frac{1}{2}$	$1\frac{1}{2}$	1		
61	$7\frac{1}{2}$	$1\frac{3}{4}$	14	12		
$7\frac{1}{2}$	9	2	2	112		
9	11	$2^{\frac{1}{2}}$	21/2	$1\frac{2}{4}$		
11	13	3	3	2		
13	15	$3\frac{1}{2}$	$3\frac{1}{2}$	21/2		
15	18	4		3		
18	22	5		31/2		
22	26	6		4		
26	30	7		5		

TABLE 11-1 Key size vs. shaft diameter

Step 1 – Determine key size based on shaft diameter

Step 2 – Calculate required length, L, based on torque (11.4)

Source: Reprinted from ANSI Standard B17.1-1967(R98), by permission of the American Society of Mechanical Engineers. All rights reserved.

Note: Values in nonshaded areas are preferred. Dimensions are in inches.

Step 3 – Specify appropriate shaft and bore dimensions for keyseat:

See Figure 11.2

Note, should also specify fillet radii and key chamfers – see Table 11-2

Other types of keys:

- Tapered key can install after hub (gear) is installed over shaft.
- b. Gib head key ease of extraction
- c. Pin keys low stress concentration
- d. Woodruff key light loading offers ease of assembly

11.4 Design of Keys – stress analysis to determine required length:

transmitted

No load

T = F/(D/2) or F = T/(D/2) this is the force the key must react!!!

Shear stress

Required Length based on Shear Stress:

$$L = \frac{2T}{\tau_d DW} \qquad \text{where } \tau_d = 0.5 Sy / N$$

Required Length based on Bearing Stress:

$$L = \frac{4T}{\sigma_d DH} \quad where \ \sigma_d = Sy / N$$

Typical parameters for keys:

N = 3, material 1020 CD (Sy = 21,000 psi)

11.4 Splines

Advantages:

- •Can carry higher torque for given diameter (vs keys) or
- •Lower stress on attachment (gear)
- •Better fit, less vibration (spline integral to shaft so no vibrating key)
- •May allow axial motion while reacting torque

Disadvantage:

•Cost

•Impractical to use as fuse

"Axial keys" machined into a shaft

Transmit torque from shaft to another machine element

Advantages

- Uniform transfer of torque
- Lower loading on elements
- No relative motion between "key" and shaft
- Axial motion can be accommodated (can cause fretting and corrosion)
- Mating element can be indexed with a spline
- Generally hardened to resist wear

Spline Types

- Straight
 - -SAE
 - -4, 6, 10 or 16 splines
- Involute
 - Pressure angles of 30, 37.5, or 45 deg.
 - Tend to center shafts for better concentricity

SAE Spline Sizes

- B: Slide without Load
- C: Slide under Load

TABLE 11–4 Formulas for SAE straight splines

No. of	W,	A: Permanent fit		Tc with	<i>B:</i> slide out load	<i>C:</i> To slide under load	
splines	fits	h	d	h	d	h	d
Four Six Ten Sixteen	0.241D 0.250D 0.156D 0.098D	0.075D 0.050D 0.045D 0.045D	0.850D 0.900D 0.910D 0.910D	0.125D 0.075D 0.070D 0.070D	0.750D 0.850D 0.860D 0.860D	0.100D 0.095D 0.095D	0.800D 0.810D 0.810D

Note: These formulas give the maximum dimensions for W, h, and d.

Two types of splines:

Straight Sided

Involute:

Number of splines	Fit	Torque capacity	Required diameter
4	A	139 <i>D</i> ²	$\sqrt{T/139}$
4	В	$219D^{2}$	$\sqrt{T/219}$
6	А	$143D^{2}$	$\sqrt{T/143}$
6	В	$208D^{2}$	$\sqrt{T/208}$
6	С	270D ²	$\sqrt{T/270}$
10	Α	215D ²	$\sqrt{T/215}$
10	В	$326D^2$	$\sqrt{T/326}$
10	C '	430D ²	$\sqrt{T/430}$
16	А	$344D^{2}$	$\sqrt{T/344}$
16	В	$521D^2$	$\sqrt{T/521}$
16	С	$688D^{2}$	$\sqrt{T/688}$

site for straight onlings nor

Use this for spline design – SAE formulas based on 1,000 psi bearing stress allowable!!

Use this to get diameter. Then table 11.4 to get W, h, d

TADIE 11 5 To

Torque Capacity

 Torque capacity is based on 1000 psi bearing stress on the sides of the splines

T = 1000*N*R*h

- N = number of splines
- R = mean radius of the splines
- h = depth of the splines

Torque Capacity Cont'd

$$R = \frac{1}{2} \left(\frac{D+d}{2} \right) = \frac{D+d}{4}$$

$$h = \frac{1}{2} (D-d)$$

Substituting R and h into torque equation: $T = 1000 N \left(\frac{D+d}{4} \right) \left(\frac{D-d}{2} \right) = 1000 N \left(\frac{D^2 - d^2}{8} \right)$

Torque Capacity Cont'd

- Further refinement can be done by substituting appropriate values for N and d.
- For 16 spline version, with C fit,

N = 16 and d = .810D
T = 1000(16)
$$\left(\frac{D^2 - (.810D)^2}{8}\right)$$

 $T = 688D^2$ Torque in IN-LBS/INCH of spline

$$D=\sqrt{T/688}$$

Required D for given Torque

Torque Capacity for Straight Splines

TABLE 11–5 Torque capacity for straight splines per inch of spline length

Number of splines	Fit	Torque capacity	Required diameter
4	А	139 <i>D</i> ²	$\sqrt{T/139}$
4	В	$219D^{2}$	$\sqrt{T/219}$
6	Α	$143D^{2}$	$\sqrt{T/143}$
6	В	$208D^{2}$	$\sqrt{T/208}$
6	С	$270D^{2}$	$\sqrt{T/270}$
10	Α	$215D^{2}$	$\sqrt{T/215}$
10	В	$326D^{2}$	$\sqrt{T/326}$
10	С	$430D^{2}$	$\sqrt{T/430}$
16	Α	$344D^{2}$	$\sqrt{T/344}$
16	В	$521D^{2}$	$\sqrt{T/521}$
16	С	$688D^{2}$	$\sqrt{T/688}$

Torque Capacity for Straight Splines

FIGURE 11–7 Torque capacity per inch of spline length, lb · in

Example: A chain sprocket delivers 4076 inlbs of torque to a shaft having a 2.50 inch diameter. The sprocket has a 3.25 inch hub length. Specify a suitable spline having a B fit.

$\mathsf{T} = \mathsf{k}\mathsf{D}^2\mathsf{L}$

- T = torque capacity in in-lbs
- kD² = torque capacity per inch (from Table 11-5)
 - = length of spline in inches

Example Continued

$$k = \frac{T}{D^{2}L} = \frac{4076 \text{ in} \cdot \text{lbs}}{(2.50")^{2}(3.25")} = 200.7 = 201$$

TABLE 11–5Torque capacity for straight splines perinch of spline length

• From Table 11-5, use 6 splines

Number of splines	Fit	Torque capacity	Required diameter
4	А	$139D^{2}$	$\sqrt{T/139}$
4	В	$219D^{2}$	$\sqrt{T/219}$
6	A	$143D^{2}$	$\sqrt{T/143}$
6	В	$208D^{2}$	$\sqrt{T/208}$
6	С	$270D^{2}$	$\sqrt{T/270}$
10	Α	$215D^{2}$	$\sqrt{T/215}$
10	В	$326D^{2}$	$\sqrt{T/326}$
10	С	$430D^{2}$	$\sqrt{T/430}$
16	Α	$344D^{2}$	$\sqrt{T/344}$
16	В	$521D^{2}$	$\sqrt{T/521}$
16	С	$688D^{2}$	$\sqrt{T/688}$

Torque Capacity for Straight Splines

FIGURE 11-7 Torque capacity per inch of spline length, lb · in

Taper & Screw

(a) Taper and screw

Expensive - machining

Good concentricity

Moderate torque capacity

Can use a key too

(b) Taper and nut

Couplings

- Used to connect two shafts together at their ends to transmit torque from one to the other.
- Two kinds of couplings:
 - -RIGID
 - -FLEXIBLE

Rigid Couplings

NO relative motion between the shafts.

Precise alignment of the shafts

Bolts in carry torque in shear. N = # of bolts.

Flexible Couplings

- Transmit torque smoothly
- Permit some axial, radial and angular misalignment

FIGURE 11–16 Chain coupling. Torque is transmitted through a double roller chain. Clearances between the chain and the sprocket teeth on the two coupling halves accommodate misalignment. (Emerson Power Transmission Corporation, Ithaca, NY)

FIGURE 11–17 Ever-Flex coupling. The features of this coupling are that it (1) generally minimizes torsional vibration; (2) cushions shock loads; (3) compensates for parallel misalignment up to 1/32 in; (4) accommodates angular misalignment of $\pm 3^{\circ}$; and (5) provides adequate end float, $\pm 1/32$ in. (Emerson Power Transmission Corporation, Ithaca, NY)

Flexible Couplings

FIGURE 11–18 Grid-Flex coupling. Torque is transmitted through a flexible spring steel grid. Flexing of the grid permits misalignment and makes it torsionally resilient to resist shock loads. (Emerson Power Transmission Corporation, Ithaca, NY)

FIGURE 11–19 Gear coupling. Torque is transmitted between crown-hobbed teeth from the coupling half to the sleeve. The crown shape on the gear teeth permits misalignment. (Emerson Power Transmission Corporation, Ithaca, NY)

Flexible Couplings

FIGURE 11–21 PARA-FLEX® coupling. Using an elastomeric element permits misalignment and cushions shocks. (Rockwell Automation/Dodge, Greenville, SC)

Lord Corp. Products

FIGURE 11–22

Dynaflex® coupling. Torque is transmitted through elastomeric material that flexes to permit misalignment and to attenuate shock loads. (Lord Corporation, Erie, PA)

Flexible Coupling

FIGURE 11–23 Jaw-Type coupling (Emerson Power Transmission Corporation, Ithaca, NY)

(a) Assembled coupling

Neoprene (normal duty applications) Bronze, oil impregnated (low-speed, high-torque applications) Polyurethane (extra capacity at medium to high speed)

(b) Types of inserts

Universal Joints

Large shaft misalignments permissible

Key factors in selection are Torque, Angular Speed and the Operating Angle

FIGURE 11–25 Universal joint components (Curtis Universal Joint Co., Inc., Springfield, MA)

Output not uniform wrt input

FIGURE 11–26 Double universal joint (Curtis Universal Joints Co., Inc., Springfield, MA)

Output IS uniform wrt input

Axial Constraint Methods

Retaining Rings

	BASIC		BOWED		REINFORCED			н	EAVY-DUTY	
	N5000			5101*			5115			5160
	For housings and bores		For s	shafts and pins	5.7	For	shafts and pins		For	shafts and pins
	Size .250-10.0 in	00	Size	.188-1.750 in.		Size	.094—1.0 in.		Size	.394-2.0 in.
INTERNAL	Range 6.4-254.0 mm.	EXTERNAL	Range	4.8-44.4 mm.	EXTERNAL	Range	•	EXTERNAL	Range	10.0-50.8 mm.
	BOWED			BEVELED		BO	WED E-RING		K	LIPRING®
	N5001*			5102			5131			5304
	For housings and bores		For s	hafts and pins		For	shafts and pins		For	shafts and pins
00	Size .250-1.750 in.	00	Size	1.0-10.0 in		Size	.110-1.375 in.		Size	.156-1.000 in.
INTERNAL	Range 6.4-44.4 mm.	EXTERNAL	Range	25.4-254.0 mm.	EXTERNAL	Range	2.834.9 mm.	EXTERNAL	Range	4.0-25.4 mm.
	BEVELED		CF	RESCENT®			E-RING		G	RIPRING®
	°N5002/*N5003			5103			5133			5555
	1.0-10.0 in.		For s	shafts and pins	2	For	shafts and pins		For	shafts and pins
00	Size ° 25.4-254.0 mm		Size	.125-2.0 in.		Size	040-1.375 in.	dD	Size	.079—.750 in.
INTERNAL	* 39.7—71.4 mm	EXTERNAL	Kange	3.2-50.8 mm.	EXTERNAL	Range	1.0-34.9 mm.	EXTERNAL	Range	2.0-19.0 mm.
	CIRCULAR		c	IRCULAR		RADI	AL GRIPRING®		HIG	H-STRENGTH
	5005		5105			5135			5560*	
	For housings and bores	53	For shafts and pins		18 SI	for shafts and pins			For shafts and pins	
	Size .312-2.0 in.		Size	.094-1.0 in.		Size	.094375 in.		Size	.101-328 in
INTERNAL	Kange 🔹	EXTERNAL	Range	٠	EXTERNAL	Range	2.4-9.5 mm.	EXTERNAL	Range	•
	INVERTED		INTERLOCKING			PR	ONG-LOCK®	PERM	ANENT	SHOULDER
	5008			5107*			5139*			5590*
	For housings and bores		For s	shafts and pins	Eva	For	shafts and pins		For	shafts and pins
	Size .750-4.0 in.		Size	.469-3.375 in.		Size	.092438 in.		Size	.250750
INTERNAL	19.0-101.6 mm.	EXTERNAL	Range	11.985.7 mm.	EXTERNAL	Range	•	EXTERNAL	Range	64 19.0 mm
	BASIC		1	NVERTED		REINF	ORCED E-RING			
	5100		!	5108			5144	常Non-Stor Available	cking F	Ring Type:
	For shafts and pins		For s	shafts and pins		For shafts and pins Of		only	able on special orde	
00	Size .125-10.0 in.		Size	.500-4.0 in.		Size	.094562 in.	-		
			I RADEP			• Range				

Locknuts

