Flywheel Energy Storage (FES)

Overview

Why it's Under Development
What is a Flywheel
Developmental Challenges
Significant Advantages
Applications of Flywheels

Why It's Under Development

Flywheel research by NASA is based at the Aerospace Flywheel Technology program at Glenn Research Center in Cleveland, Ohio


Their goal is to:

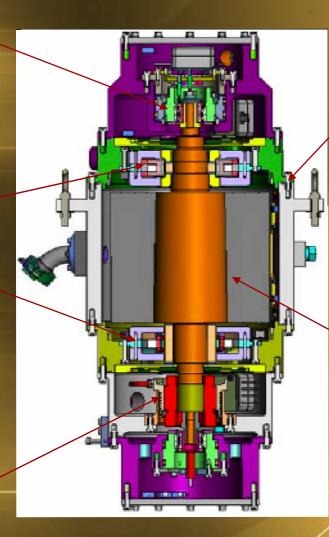
Determine whether flywheels are a viable replacement for the electrochemical batteries on the ISS, thus, providing a more efficient and cost-effective alternative to electrochemical batteries in spacecrafts, as well as in cars and other everyday applications

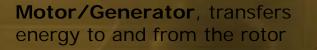
What is a Flywheel?

A heavy-rimmed rotating wheel used to minimize variations in angular velocity and revolutions per minute, as in a machine subject to fluctuation in drive and load.

 FES - uses at least two flywheels in a counter-rotating configuration so that the torque & momentum vectors of one flywheel can cancel those generated by the other

NASA G2 Flywheel Module - The Glenn Flywheel Development Team designed, built and successfully operated the new G2 flywheel to 41,000 RPM on September 2nd, 2004


Components of a Flywheel


Auxiliary Bearings, Capture rotor during launch and touchdowns

Magnetic Bearing, used to levitate rotor. These non=contact bearings provided low loss high

provided low loss, high speeds, and long life

Housing, A structure used to hold the stationary components together. Can also act as a vacuum chamber

Composite rotor, stores energy. High energy density is achieved through the use of carbon fiber composites

How it Works

- Charged by current from the photovoltaic cells of the solar arrays
- The current will spin up the flywheel through a motor, the high rotational speed, is a way to store energy
- The electrical energy is transferred to rotational kinetic energy
- As the flywheel is discharged and spun down, the stored rotational energy is transferred back into electrical energy by the motor now reversed to work as a generator and creates electricity to supply power where it is needed

Challenges

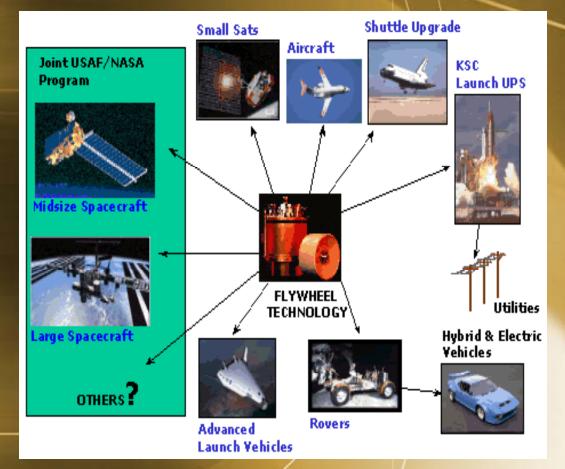
- Develop better magnetic bearings -- Bearings that suspend the rotor in a vacuum
- + Controlling the rotating shaft of the flywheel
- Potential dual use of the flywheel as a battery and as a momentum wheel to assist with attitude control

Significant Advantages

Energy Storage Characteristics	Resulting Benefits
10+ times greater specific energy	Lower Mass
Long life (15yrs) unaffected by number of charge/discharge cycles	Reduced logistics, maintenance, life cycle costs and enhanced vehicle integration
85-95% round-trip efficiency - higher efficiency	More usable power, lower thermal loads, compare to <70-80% for battery system - saves power
High charge/discharge rates & no taper charge required	Peak load capability, 5-10% smaller solar array
Deterministic state-of-charge	Improved operability

Air Force Research Laboratory

An eight-person team at the Air Force Research Laboratory's Space Vehicles Directorate believe their experiment will demonstrate the innovative technology of combined attitude control and energy storage on a satellite by the summer of 2007.


 The experiment consists of three flywheels spinning between 16,000 and 40,000 revolutions per minute.

A completed mini-Agile Multi-Purpose Satellite Simulator is shown with three flywheel mass simulators that spin between 16,000 and 40,000 revolutions per minute.

Aerospace Applications

- + LEO satellites
- + GEO satellites
- Space Station (a large LEO satellite)
- + Planetary probes
- + Aircraft
- Military vehicles
- Hybrid and electric vehicles
 - Uninterruptable Power
 Supplies

Current terrestrial applications — include providing backup power for hospitals and serving as a power bridge (filling the gap between power outage and in generator startup) in manufacturing plants