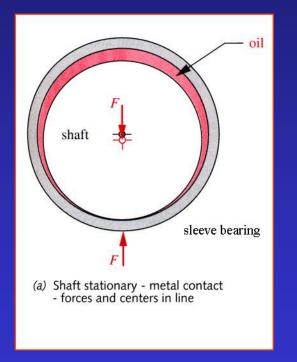
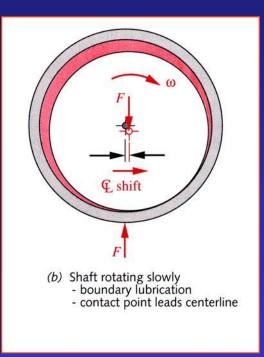
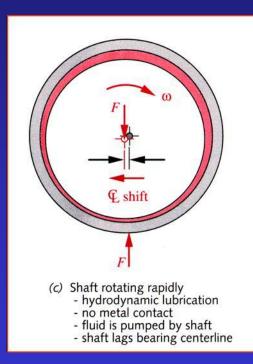

Rolling Contact Bearings – load is transferred through rolling elements such as balls, straight and tapered cylinders and spherical rollers.

Journal (sleeve) Bearings – load is transferred through a thin film of lubricant (oil).

Rolling Contact Bearings

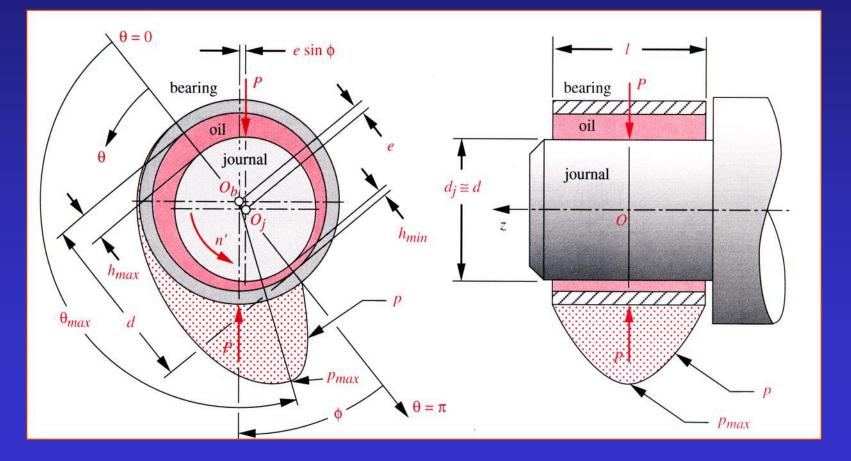

Load is transferred through elements in rolling contact rather than sliding contact.




Bearings

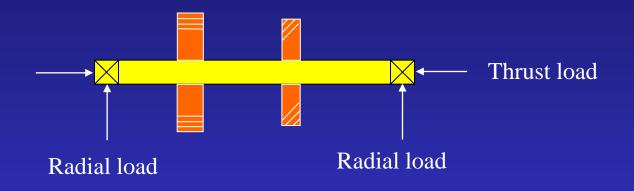
Journal (Sleeve) Bearings

Load is transferred through a lubricant in sliding contact



Journal (Sleeve) Bearings

Thick-film lubrication (hydrodynamic), pressure distribution, and film thickness.


 h_{\min} = minimum film thickness, c = radial clearance, e = eccentricity

Design Considerations

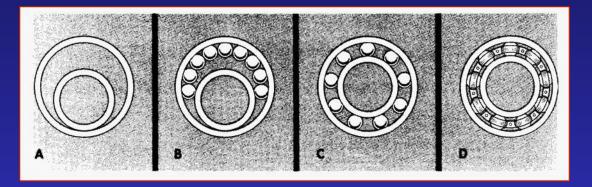
Bearings are selected from catalogs, before referring to catalogs you should know the followings:

• Bearing load – radial, thrust (axial) or both

- Bearing life and reliability
- Bearing speed (rpm)
- Space limitation
- Accuracy

Rolling Contact Bearings

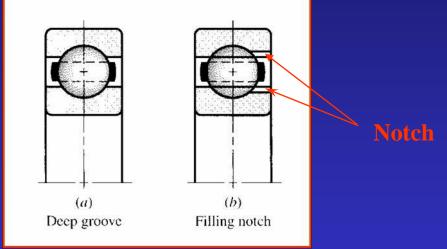
1. Ball bearings


- Deep groove (Conrad) bearing
- Filling notch ball bearing or maximum capacity bearing
- Angular contact bearings (AC)

2. Roller bearings

- Cylindrical bearings
- Needle bearings
- Tapered bearings
- Spherical bearings
- 3. Thrust bearings
- 4. Linear bearings

1. Deep groove (Conrad) bearing

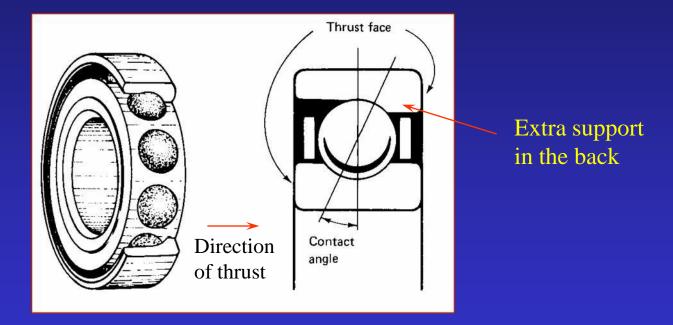


- Load capacity is limited by the number of balls
- Primarily designed to support radial loads, the thrust capacity is about 70% of radial load capacity

Ball Bearings

2. Filling notch or maximum capacity ball bearings

Bearings have the same basic radial construction as Conrad type. However, a *filling notch* (loading groove) permits more balls to be used.

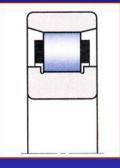


- Radial load capacity is 20 40% higher than Conrad type
- Thrust load capacity drops to 20% (2 directions) of radial load capacity.

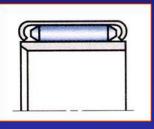
Ball Bearings

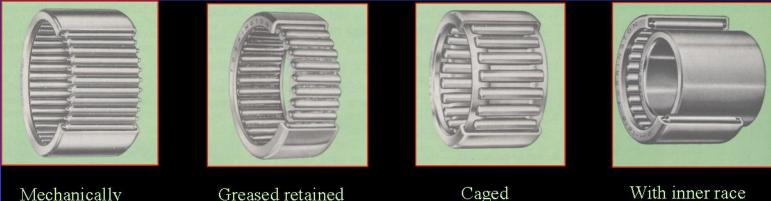
3. Angular contact bearings (AC)

The centerline of contact between the balls and the raceway is at an angle to the plane perpendicular to the axis of rotation.



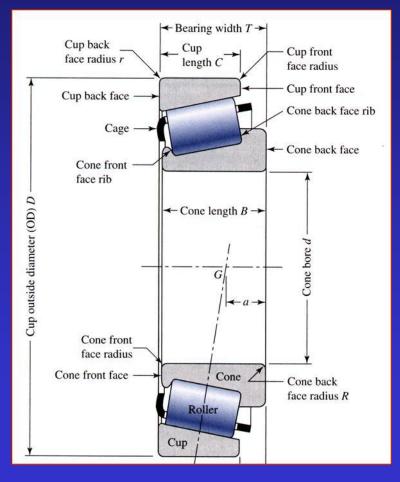
• Used for high radial and thrust load applications

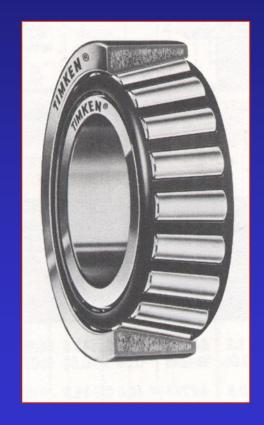

Roller Bearings


Roller bearings have higher load capacity than ball bearings, load is transmitted through line contact instead of point contact.

Straight cylindrical roller

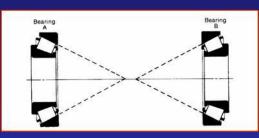
Needle type

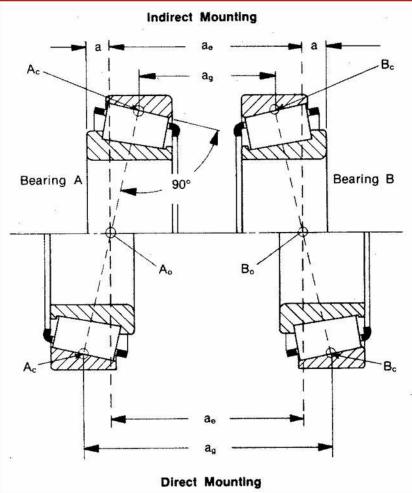

Mechanically retained rollers


Greased retained rollers

Roller Bearings

Tapered bearings


Designed to withstand high radial loads, high thrust loads, and combined loads at moderate to high speeds. They can also withstand repeated shock loads.


Tapered Bearings

Indirect and *Direct* mounting

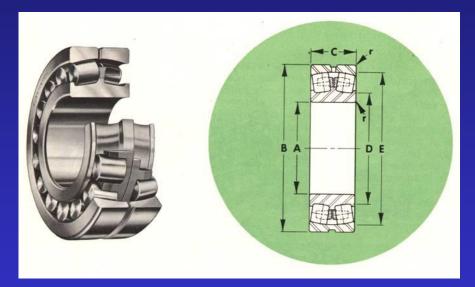
Indirect mounting

Indirect mounting provides greater rigidity when pair of bearings is **closely spaced**: front wheel of a car, drums, sheaves,..

Direct mounting

Direct mounting

provides greater rigidity when pair of bearings is **not closely spaced**: transmission, speed reducers, rollers,..

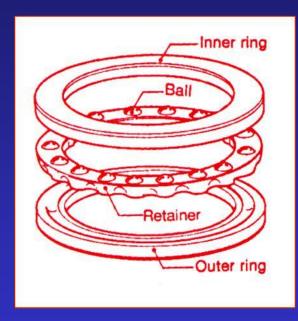

 $a_a = effective bearing spread$

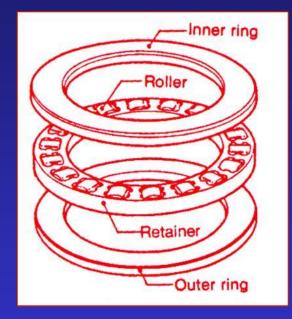
Measure of the rigidity of the bearing mounting

Roller Bearings

Spherical bearings

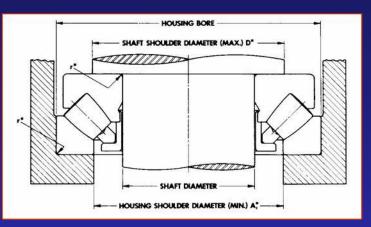
Bearing design uses barrel shaped rollers. Spherical roller bearings combine very high radial load capacity with modest thrust load capacity and *excellent tolerance to misalignment*.

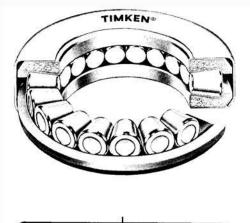



be	aring nu	mber		nomine	al bec	iring di	mens	ions	dist.		ulder nsions	weight Ibs.	basic	§ approx.	†basic
series 222 straight	AFBMA reference	series 222K tapered		A bore	outside	B diameter	w	C idth	*r	D max.	E min.	series 222	static capacity	limiting speed	dynamic capacity
bore	number	bore	mm	inch	mm	inch	mm	inch	inch	inch	inch	222K	lbs.	rpm	lbs.
22207 22208 22209	35SD22 40SD22 45SD22	 22209 K	35 40 45	1.3780 1.5748 1.7717	72 80 85	2.8346 3.1496 3.3465	23 23 23	.9055 .9055 .9055	.04 .04 .04	17/8 2 23/6	2 ¹⁷ / ₃₂ 2 ³ / ₄ 3	1.1 1.1 1.2	9500 11500 12800	5610 5000 4610	9100 11000

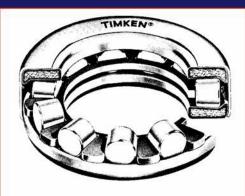
Thrust Bearings

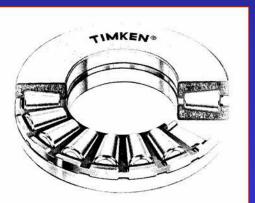
Ball thrust bearing


Roller thrust bearing



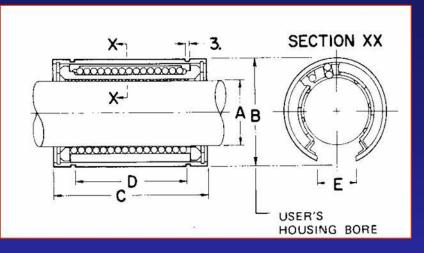
Roller Thrust Bearings

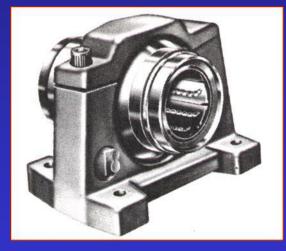

Spherical Thrust Bearings

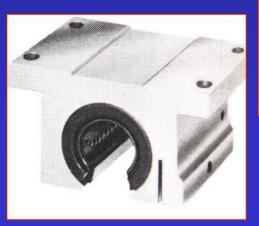


Tapered Thrust Bearings

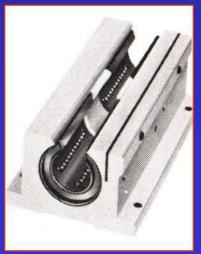
Cylindrical Thrust Bearings

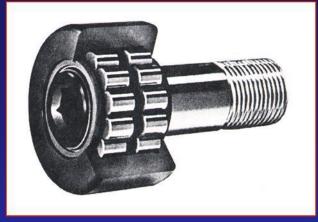


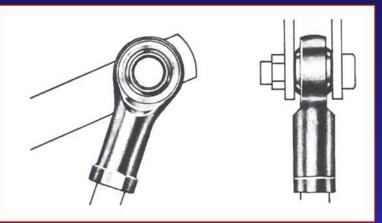


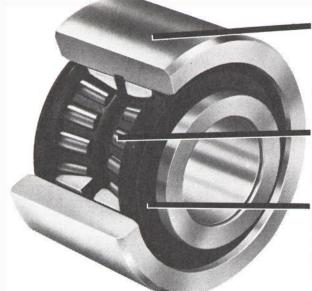

A MITTE	Control A

Linear Bearings








Roller bearing cam follower

Bearings

Spherical rod end

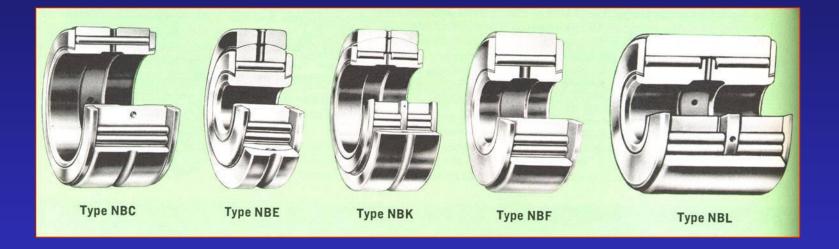
TREAD

Wear-resistant high carbon steel with hardened outer shell (Rc 55-60) and tough inner core.

BEARING Tough tapered roller bearing lubricated for life.

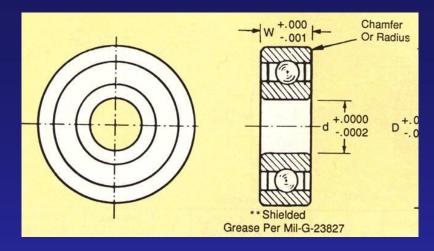
SEALS Special design to retain lubricants and protect races from damaging contaminants.

Flanged

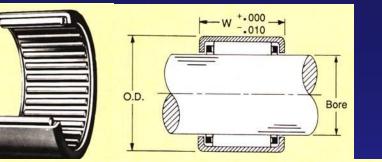

V-Grooved

Load runners (idler-rollers)

Bearings


Airframe control bearings – designed to meet the specific needs of the airframe industry, meets military and national standards.

Designed to carry heavy static load and will also handle oscillation or slow rotation.

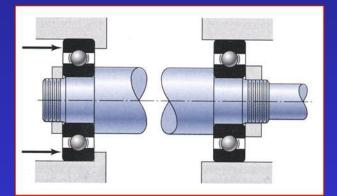

Track rollers, withstand heavy rolling loads.

Precision Bearings

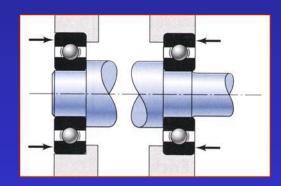
STOCK NUMBER	1-9 PRICE	d	D	w	SHIELD DATA	DYNAMIC LOAD (LBS.)	STATIC LOAD (LBS.)
B1-37 B1-37-S	\$ 4.25 5.46	.0469	.1562	.0625 .0937	*	15	4
B1-38 B1-38-S	\$ 3.97 5.04	.0550	.1875	.0781 .1094		24	9
B1-33 B1-33-S	\$ 3.69 4.86	.0781	.2500	.0937 .1406	*	29	11
B1-34 B1-34-S	\$ 3.69 5.01	.0937	.3125	.1094 .1406	:.	62	24
B1-35 B1-35-S	\$ 3.69 4.73		.2500	.0937 .1094	•	33	13
B1-36 B1-36-S B1-24	3.59 4.95	.1250	.3125	.1094 .1406	•	62	24
B1-5	3.94 5.23		.3750	.1562 .1562	<i>.</i> .	71	29
B1-42 B1-42-S	\$ 4.35 6.13	.1562	.3125	.1094 .1250		44	18
B1-40 B1-40-S	\$ 4.44 5.69		.3125	.1094 .1250	*	35	13
B1-25 B1-27	3.97 5.04	.1875	.3750	.1250 .1250	*	79	33
B1-26 B1-7	4.36 5.41		.5000	.1562 .1960	*	139	60
B1-29 B1-30	\$ 4.92 5.78		.3750	.1250 .1250	•	38	18
B1-31 B1-32	4.40 5.41	.2500	.5000	.1250 .1875	*	128	55
B1-28 B1-9	4.59 5.69		.6250	.1960 .1960		159	71
B1-43 B1-43-S	\$7.48 8.38	.3125	.5000	.1562 .1562		95	47
B1-39 B1-13	\$ 11.70 12.38	.3750	.8750	.2188 .2812		451	219
B1-44 B1-44-S	\$ 17.19 18.38	.5000	.8750	.2188 .2812	*	203	114

Precision Bearings – High rpm Applications

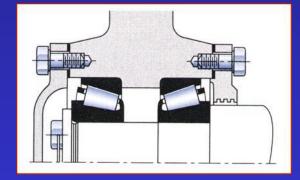
								All Street Property	HARDENED (ORDER SEI STOCK LENGT OTHER LENGTH	PARATELY) TH 12 INCHES
STOCK NUMBER	1-9 PRICE	BORE	BRG. O.D.	HOUSING BORE DIA.	BRG. W	MAX. SPEED RPM	DYNAMIC (LBS.)	STATIC (LBS.)	SHAFTING* STOCK NUMBER	SHAFT DIA.
NRB-24	\$ 3.82	1/8	.2500	.25002505	.250	70,000	161	80	-	.12501247
NRB-34	3.30	3/16	.3438	.34323437	.250	70,000	335	185	_	.18751872
NRB-36	3.30	3/16	.3438	.34323437	.375	70,000	540	345	-	.18751872
NRB-44	3.30	1/4	.4375	.43704380	.250	55,000	315	162	_	.25002495
NRB-47	2.30	1/4	.4375	.43704380	.438	55,000	800	540		.25002495
NRB-55	2.30	5/16	.5000	.49955005	.312	44,000	570	350	_	.31253120
NRB-59	2.58	5/16	.5000	.49955005	.562	44,000	1,160	880	_	.31253120
NRB-65	2.58	3/8	.5625	.56205630	.312	37,000	600	380	LMS-46-12	.37503745
NRB-610	2.30	3/8	.5625	.56205630	.625	37,000	1,440	1,180	LMS-46-12	.37503745
NRB-86	2.45	1/2	.6875	.68706880	.375	27,000	900	670	LMS-48-12	.50004995
NRB-812	2.56	1/2	.6875	.68706880	.750	27,000	1,930	1,780	LMS-48-12	.50004995
NRB-107	2.56	5/8	.8125	.81208130	.438	22,000	1,290	1,140	LMS-50-12	.62506245
NRB-1012	2.76	5/8	.8125	.81208130	.750	22,000	2,360	2,410	LMS-50-12	.62506245
NRB-126	2.61	3/4	1.0000	.9995-1.0005	.375	18,000	1,390	1,030	LMS-52-12	.75007495
NRB-1212	2.90	3/4	1.0000	.9995-1.0005	.750	18,000	3,000	2,750	LMS-52-12	.75007495
NRB-168	3.22,	1″	1.2500	1.2495-1.2505	.500	14,000	2,180	2,060	LMS-56-12	1.00009995
NRB-1616	3.51	1″	1.2500	1.2495-1.2505	1.000	14,000	4,650	5,200	LMS-56-12	1.00009995


Mounting Bearings

Pillow Block



Flange



Common mounting, inner ring held in position by nuts threaded onto the shaft.

Alternative method, inner ring is press fitted onto the shaft.

Two-bearing mounting

Comparison of Ball Bearings

		SIZE R	ANGE	AV	ERAGE REL	ATIVE RATING	IS	AV	AILABLE W	ITH	DIMEN	SIONS
	TYPE	IN IN		Capacity		Limiting	Permis- sible			Snap		
		Bore	0.D.	Radial	Thrust	Speed	Misalign- ment	Shields	Seals	Rings	Metric	Inch
		.1181 to 41.7323	.3750 to 55.1181	Good	Fair ◀──►	Conrad is basis for comparison 1.00	\pm 0° 8' Std. Radial Clearance. \pm 0° 12' C3 Clear	x	x	x	x	x
		.6693 to 4.3307	1.5748 to 8.4646	Excellent	Poor	1.00	± 0° 3′	X		x	x	÷
BALL BEARINGS	ANGULAR CONTACT $15^{\circ}/40^{\circ}$ $15^{\circ}/40^{\circ}$.3937 to 7.4803	1.0236 to 15.7480	Good	Good (15°) Excellent (40°)	<u>1.00</u> 0.70	± 0° 2′				x	
	ANGULAR CONTACT 35°	.3937 to 4.3307	1.1811 to 9.4488	Excellent	Good	0.70	0°				x	
	SELF- ALIGNING	.1969 to 4.7244	.7480 to 9.4488	Fair	Fair	1.00	± 4°				x	

Bearing Comparison

		SIZE	RANGE	AVERAGE RELATIVE RATINGS Capacity Permis-		AV	AILABLE W	ITH	DIMENSIONS			
	TYPE	IN IN	CHES	Сара	icity	Limiting	Permis- sible	Shields	Seals	Snap	Metric	Inch
		Bore	0.D.	Radial	Thrust	Speed	Misalign- ment	Shields	Sears	Rings	Metric	Inch
		.1181 to 41.7323	.3750 to 55.1181	Good	Fair	Conrad is basis for comparison 1.00	\pm 0° 8' Std. Radial Clearance. \pm 0° 12' C3 Clear	x	x	x	x	x
		.6693 to 4.3307	1.5748 to 8.4646	Excellent	Poor	1.00	± 0° 3'	x		x	x	
ALL EARINGS	ANGULAR CONTACT $15^{\circ}/40^{\circ}$ $\frac{15^{\circ}}{40^{\circ}}$.3937 to 7.4803	1.0236 to 15.7480	Good	Good (15°) Excellent (40°)	1.00	± 0° 2'				x	
	ANGULAR CONTACT 35°	.3937 to 4.3307	1.1811 to 9.4488	Excellent	Good	0.70	0°				x	
	SELF- ALIGNING	.1969 to 4.7244	.7480 to 9.4488	Fair	Fair	1.00	± 4°				x	
	SEPARABLE INNER RING NON- LOCATING	.4724 to 19.6850	1.2598 to 28.3465	Excellent	0	1.00	± 0° 4'				x	
YLIN- IRICAL IOLLER IEARINGS	SEPARABLE INNER RING ONE DIR. LOCATING	.4724 to 12.5984	1.2598 to 22.8346	Excellent	Poor	1.00	± 0° 4′				x	
	SELF- CONTAINED TWO DIR. LOCATING	.4724 to 3.9370	1.4567 to 8.4646	Excellent	Poor	1.00	± 0° 4′				x	
APERED IOLLER IEARINGS	SEPARABLE	.6205 to 6.0000	1.5700 to 10.0000	Good	Good	0.60	± 0° 2'				x	x
PHERICAL	SELF-	.9843 to 12.5984	2.0472 to 22.8346	Good	Fair ←→	0.50	± 4°				x	
EARINGS	SELF- ALIGNING	.9843 to 35.4331	2.0472 to 46.4567	Excellent	Good	0.75	± 1°				x	
EEDLE	COMPLETE BEARINGS with or without locating rings & lubricating groove	.2362 to 14.1732	.6299 to 17.3228	Good	o	0.60	± 0° 2′		x		x	x
EARINGS	DRAWN CUP	.1575 to 2.3622	.3150 to 2.6772	Good	0	0.30	± 0° 2′				x	x
	SINGLE DIRECTION BALL Grooved Race	.2540 to 46.4567	.8130 to 57.0866	Poor	Excellent	0.30	0°				x	x
HRUST EARINGS	SINGLE DIRECTION CYL. ROLLER	1.1811 to 23.6220	1.8504 to 31.4960	0	Excellent	0.20	0°				x	1
	SELF- ALIGNING SPHERICAL ROLLER	3.3622 to 14.1732	4.3307 to 22.0472	Poor	Excellent	0.50	 ± 3°				x	

Bearing Life

If a bearing is clean, properly lubricated and mounted and is operating at reasonable temp., failure is due to fatigue caused by *repeated contact stresses* (Hertzian stress)

Fatigue failure consists of a spalling or pitting of the curved surfaces

Spalling – crack initiates below the curved surface at the location of maximum shear stress, propagates to the surface causing surface damage.

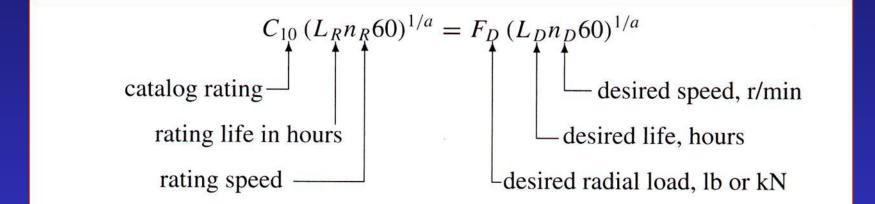
Failure criterion – spalling or pitting of an area of 0.01 in², Timken company (tapered bearings)

Bearing Life

Life – number of revolution or hours of operation, at constant speed, required for the failure criterion to develop.

Rating Life – defines the number of revolution or hours of operation, at constant speed, in such a way that 90% of the bearings tested (from the same group) will complete or exceed before the first evidence of failure develops. This is known as L_{10} life.

For ball bearings and spherical bearings: $L_{10} = 500$ (hours) x 33.33 (rpm) x $60 = 10^6 = 1$ million revolutions


For tapered bearings manufactured by Timken:

 $L_{10} = 3000$ (hours) x 500 (rpm) x 60 = 90 x 10⁶ = 90 million revolutions

Basic Dynamic Load Rating, C – constant radial load that a group of bearings can carry for L₁₀ life.

Bearing Life

 $L_{10} = (C / F)^{a}$, a = 3 for ball bearings and a = 10/3 for roller bearings F = applied radial load

Solving for C_{10} gives

$$C_{10} = F_D \left(\frac{L_D n_D 60}{L_R n_R 60}\right)^{1/a}$$

Example

Select a deep groove ball bearing for a desired life of 5000 hours at 1725 rpm with 90% reliability. The bearing radial load is 400 lb.

$$C_{10} = F_D \left(\frac{L_D n_D 60}{L_R n_R 60}\right)^{1/a} = 400 \left[\frac{5000(1725)60}{10^6}\right]^{1/3} = 3211 \text{ lb} = 14.3 \text{ kN}$$

		The states of	Fillet	Shou	ulder		Load Ro	atings, kN	
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep G	roove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C	Co	C	Co
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	140	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0

Bearing Reliability

If a machine is assembled with 4 bearings, each having a reliability of 90%, then the reliability of the system is $(.9)^4 = .65 = 65\%$. This points out the need to select bearings with higher than 90% reliability.

The distribution of bearing failure can be best approximated by *two and three parameter Weibull distribution*.

$$\frac{1}{R} = \exp\left[\left(\frac{L/L_{10} - 0.02}{4.439}\right)^{1.483}\right] \implies L_{10} = \frac{L}{0.02 + 4.439[\ln(1/R)]^{1/1.483}}$$

$$C_{10} = F_D \left(\frac{L_D n_D 60}{L_R n_R 60}\right)^{1/a} \Longrightarrow \quad C_{10} = F_D \left\{\frac{(L_D n_D / L_R n_R)}{0.02 + 4.439 [\ln (1/R)]^{1/1.483}}\right\}^{1/a}$$

$$C_{10} = F_D \left\{ \frac{(L_D n_D / L_R n_R)}{4.48 [\ln (1/R)]^{1/1.5}} \right\}^{3/10}$$

Two parameter Weibull distribution for tapered bearings

 C_{10} is the catalog basic dynamic load rating corresponding to L_R hours of life at the speed of n_R rpm.

Example

Select a deep groove ball bearing for a desired life of 5000 hours at 1725 rpm *with 99% reliability*. The bearing radial load is 400 lb.

For 90% reliability

 $C_{10} = 14.3 \text{ kN} \implies 30 \text{ mm}$ Bore deep groove bearing

Use 99% reliability, R = .99

$$F_R = F_D \left\{ \frac{(L_D n_D / L_R n_R)}{0.02 + 4.439 [\ln (1/R)]^{1/1.483}} \right\}^{1/a} = 23.7 \text{ kN}$$

			Fillet	Shou	older		Load Ro	itings, kN	
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep G	roove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C	Co	C	Co
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
- 35	72	17	1.0	41	65	-25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0

Select a 35 mm bearing instead of 30 mm for 90% reliability

$$L_{new D} = L_D / .22 =$$

5000 / .22 = 22,770 hours

Design Life Suggestions and Load Factor

TYPE OF APPLICATION	LIFE, kh
Instruments and apparatus for infrequent use	Up to 0.5
Aircraft engines	0.5 - 2
Machines for short or intermittent operation where service interruption	
is of minor importance	4-8
Machines for intermittent service where reliable operation is of great	
importance	8-14
Machines for 8-h service which are not always fully utilized	14 - 20
Machines for 8-h service which are fully utilized	20 - 30
Machines for continuous 24-h service	50-60
Machines for continuous 24-h service where reliability is of extreme	
importance	100-200

Multiply design load by load factor.

TYPE OF APPLICATION	LOAD FACTOR
Precision gearing	1.0-1.1
Commercial gearing	1.1-1.3
Applications with poor bearing seals	<i></i>
Machinery with no impact	1.0 - 1.2
Machinery with light impact	1.2 - 1.5
Machinery with moderate impact	1.5-3.0

Equivalent Radial Load

Bearings are usually operated with some combination of radial and thrust load. Catalog ratings are based only on radial loads. Follow the guideline in catalogs to obtain the equivalent radial load.

Equivalent Radial Load

	$P = XVF_r + YF_a$
	P = equivalent load
	F_r = applied radial load (constant)
	F_a = applied thrust load (constant)
Specified by	X = radial factor
bearing	Y = thrust factor
manufacturer	V = rotational factor

Equivalent Radial Load

Factors V, X, and Y for Radial Bearings

if
$$\frac{F_a}{VF_r} \le e$$
 then $X = 1$ and $Y = 0$ (10.22)

			the L	ation to oad the Ring is	Sing Bea	le Row arings 1)		Double Ro	w Bearir	ngs 2)	
Bea	Bearing Type		1	Rotat- Station-		$\frac{F_a}{VF_r} > \epsilon$		$\frac{F_a}{VF_r} \leq \epsilon$		$\frac{F_a}{VF_r} > \epsilon$	
			V	V	X	Y	X	Y	X	X Y	
3) Radial	4) <u>Fa</u> Co	$\frac{F_a}{i Z D_w^2}$									
Contact Groove Ball Bearings	0.014 0.028 0.056	25 50 100				2.30 1.99 1.71				2.30 1.99 1.71	0.19 0.22 0.26
	0.084 0.11 0.17	150 200 300	1	1.2	0.56	1.55 1.45 1.31	1	0	0.56	1.55 1.45 1.31	0.28 0.30 0.34
	0.28 0.42 0.56	500 750 1000				1.15 1.04 1.00				1.15 1.04 1.00	0.38 0.42 0.44
20° 25° 30° 35° 40°			1	1.2	0.43 0.41 0.39 0.37 0.35	1.00 0.87 0.76 0.66 0.57	1	1.09 0.92 0.78 0.66 0.55	0.70 0.67 0.63 0.60 0.57	1.63 1.44 1.24 1.07 0.93	0.57 0.68 0.80 0.95 1.14
Self-Alignin Ball Bearing			1	1	0.40	0.4 cot a	1	0.42 cot α	0.65	0.65 cot a	1.5 tan α
Self-Alignin Tapered Ro	g and ller Bearin	gs	1	1.2	0.40	0.4 cot a	1	0.45 cot a	0.67	0.67 cot a	1.5 tan α

1) For single row bearings, when $\frac{F_a}{VF_r} \leq \epsilon$ use X = 1 and Y = 0.

For two single row angular contact ball or roller bearings mounted "face-to-face" or "back-to-back" the values of X and Y which apply to double row bearings. For two or more single row bearings mounted "in tandem" use the values of X and Y which apply to single row bearings.

2) Double row bearings are presumed to be symmetrical.

3) Permissible maximum value of $\frac{F_a}{C_0}$ depends on the bearing design.

4) Co is the basic static load rating.

5) Units are pounds and inches.

Values of X, Y and e for a load or contact angle other than shown in the table are obtained by linear interpolation.