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Partial notes – Part 4 (Fatigue) 
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Ni = ? 

Np = ? 

NT = ? 

Metal Fatigue is a process which causes premature irreversible damage or 

failure of a component subjected to repeated loading. 

FATIGUE - What is it? 
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Metallic Fatigue 

• A sequence of several, very complex phenomena encompassing several 
disciplines: 

– motion of dislocations 

– surface phenomena 

– fracture mechanics 

– stress analysis 

– probability and statistics 

• Begins as an consequence of reversed plastic deformation within a single 
crystallite but ultimately may cause the destruction of the entire component 

• Influenced by a component’s environment 

• Takes many forms: 

– fatigue at notches 

– rolling contact fatigue 

– fretting fatigue 

– corrosion fatigue 

– creep-fatigue 

Fatigue is not cause of failure per se but leads to the final fracture event. 
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The Broad Field of Fracture Mechanics 
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Intrusions and Extrusions:   
The Early Stages of Fatigue Crack Formation 
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Locally, the crack grows in shear; 

macroscopically it grows in tension. 

Δσ 

Δσ 

c 

Schematic of Fatigue Crack Initiation Subsequent Growth 

Corresponding and Transition From Mode II to Mode I 
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 The Process of Fatigue 

The Materials Science Perspective: 
 
• Cyclic slip, 

• Fatigue crack initiation, 

• Stage I fatigue crack growth, 

• Stage II fatigue crack growth, 

• Brittle fracture or ductile rupture 
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Features of the Fatigue Fracture Surface of a Typical 

Ductile Metal Subjected to Variable Amplitude Cyclic 

Loading 

(Collins, ref. 22 ) 

A – fatigue crack area 

B – area of the final static 

failure 
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Appearance of Failure Surfaces Caused by 

Various Modes of Loading (SAE Handbook) 
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Factors Influencing Fatigue Life 

Applied Stresses 

• Stress range – The basic cause of plastic deformation and consequently the 
accumulation of damage 

• Mean stress – Tensile mean and residual stresses aid  to the formation and 
growth of fatigue cracks 

• Stress gradients – Bending is a more favorable loading mode than axial 
loading because in bending fatigue cracks propagate into the region of lower 
stresses 

Materials 

• Tensile and yield strength – Higher strength materials resist plastic 
deformation and hence have a higher fatigue strength at long lives. Most 
ductile materials perform better at short lives 

• Quality of material – Metallurgical defects such as inclusions, seams, 
internal tears, and segregated elements can initiate fatigue cracks 

• Temperature – Temperature usually changes the yield and tensile strength 
resulting in the change of fatigue resistance (high temperature decreases 
fatigue resistance) 

• Frequency (rate of straining) – At high frequencies, the metal component 
may be self-heated. 
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Component 

Geometry 

Loading 

History 

Stress-Strain 

Analysis 

Damage  

Analysis 

Allowable Load - Fatigue Life 

Material 

Properties 

Information path in strength and fatigue life prediction 

procedures 

Strength-Fatigue Analysis Procedure 
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Stress Parameters Used in Static Strength  and 

Fatigue Analyses 
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Constant and Variable Amplitude Stress Histories; 

Definition of a Stress Cycle & Stress Reversal 
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In the case of the peak stress history 

the important parameters are: 
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Stress History and the “Rainflow” Counted Cycles  

1 1i i i iABS ABS      

A rainflow counted cycle is identified when any two adjacent reversals in thee 

stress history satisfy the following relation: 
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A rainflow counted cycle is identified when any two adjacent reversals in thee 

stress history satisfy the following relation: 

1 1i i i iABS ABS      

The stress amplitude of such a cycle is: 
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The Mathematics of the Cycle Rainflow Counting Method 

for Fatigue Analysis of Stress/Load Histories 
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Stress History 
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Stress History 
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Stress History 
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Stress History 
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Number of Cycles 

According to the 

Rainflow Counting 

Procedure (N. Dowling, ref. 2) 
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The Fatigue S-N method  
(Nominal Stress Approach) 

• The principles of the S-N approach (the nominal stress method)  

 

• Fatigue damage accumulation 

 

• Significance of geometry (notches) and stress analysis in fatigue 

evaluations of engineering structures 

•   

• Fatigue life prediction in the design process 
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A B 

Note! In the case of smooth 

components such as the 

railway axle the nominal stress 

and the local peak stress are 

the same! 

peak
S 

Smin 

Smax 

Wöhler’s Fatigue Test 
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Characteristic parameters of the S - N curve are: 

Se -   fatigue limit corresponding to N = 1 or 2106 cycles for  

         steels and N = 108 cycles for aluminum alloys, 

S10
3 - fully reversed stress amplitude corresponding to N = 103  

         cycles 

m -    slope of the high cycle regime curve (Part 2) 

Fully reversed axial S-N curve for AISI 4130 steel. Note the break at the LCF/HCF transition and 

the endurance limit 
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Most of available S - N fatigue data has been obtained from fully reversed rotational bending tests. 

However, material behavior and the resultant S - N curves are different for different types of loading. 

It concerns in particular the fatigue limit Se.  

The stress endurance limit, Se, of steels (at 106 cycles) and the fatigue strength, S103 corresponding 

to 103 cycles for three types of loading can be approximated as (ref. 1, 23, 24): 

                S103 = 0.90Su     and    Se = S106 = 0.5 Su             - bending 
 

                S103 = 0.75Su     and    Se = S106 = 0.35 - 0.45Su  -  axial  
 

                S103 = 0.72Su     and    Se = S106 = 0.29 Su           - torsion 
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Approximate endurance limit for various materials: 
 

Magnesium alloys  (at 108 cycles)   Se = 0.35Su 

Copper alloys (at 108 cycles)          0.25Su< Se <0.50Su 

Nickel alloys (at 108 cycles)            0.35Su <Se < 0.50Su 

Titanium alloys (at 107 cycles)        0.45Su <Se< 0.65Su 

Al alloys (at 5x108 cycles) Se = 0.45Su (if Su ≤ 48 ksi)  or   Se = 19 ksi (if Su> 48 ksi) 

Steels   (at 106 cycles)      Se = 0.5Su (if Su  ≤ 200 ksi)  or   Se = 100 ksi (if Su>200 ksi) 

Irons    (at 106 cycles)      Se = 0.4Su (if Su ≤ 60 ksi)     or   Se = 24 ksi (if Su> 60 ksi) 
 

S – N curve 
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Fatigue Limit – Modifying Factors 

For many years the emphasis of most fatigue testing was to gain 

an empirical understanding of the effects of various factors on 

the base-line S-N curves for ferrous alloys in the intermediate 

to long life ranges. The variables investigated include: 

  

- Rotational bending fatigue limit, Se
’, 

- Surface conditions, ka, 

- Size, kb, 

- Mode of loading, kc,                                 Se = ka kb kc kd ke kf·Se
’ 

- Temperature, kd 

- Reliability factor, ke 

- Miscellaneous effects (notch), kf 
 

Fatigue limit of a machine 

part, Se 
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C
a
 

Effect of various surface finishes 

on the fatigue limit of steel. 

Shown are values of the ka, the 

ratio of the fatigue limit to that 

for polished specimens. 

Below a generalized empirical graph 

is shown which can be used to 

estimate the effect of surface finish 

in comparison with mirror-polished 

specimens [Shigley (23), Juvinal 

(24), Bannantine (1) and other 

textbooks]. 

Surface Finish Effects on Fatigue Endurance Limit 

The scratches, pits and machining marks on the surface of a material add stress concentrations to the 

ones already present due to component geometry. The correction factor for surface finish is sometimes 

presented on graphs that use a qualitative description of surface finish such as “polished” or “machined”.  

(from J. Bannantine, ref.1) 

k
a
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Size Effects on Endurance Limit 
Fatigue is controlled by the weakest link of the material, with the probability of existence (or density) of a 

weak link increasing with material volume. The size effect has been correlated with the thin layer of 

surface material subjected to 95% or more of the maximum surface stress. 

There are many empirical fits to the size effect data. A fairly conservative one is: 

 

 

 

 

 

 

 

• The size effect is seen mainly at very long lives. 

• The effect is small in diameters up to 2.0 in (even in bending and torsion). 

Stress effects in non-circular cross section members 

In the case of non-circular members the approach is based on so called effective diameter, de. 

The effective diameter, de, for non-circular cross sections is obtained by equating the volume of material 

stressed at and above 95% of the maximum stress to the same volume in the rotating-bending 

specimen. 
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+ 

- 

0.95max 

max 

0.05d/2 

The material volume subjected to stresses 

  0.95max is concentrated in the ring of 

0.05d/2 thick. 

The surface area of such a ring is: 
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Loading Effects on Endurance Limit 

 

The ratio of endurance limits for a material found using axial and rotating 

bending tests ranges from 0.6 to 0.9. 

 

 

 

 

The ratio of endurance limits found using torsion and rotating bending tests 

ranges from 0.5 to 0.6. A theoretical value obtained from von Mises-Huber-

Hencky failure criterion is been used as the most popular estimate.  

( ) ( )
(0.7 0.9)

0.7 0.9 ( 0.85)
c

e axial e bendi

c

ng
S S

suggested by Shigl y kek

 

  

( ) ( )
0.577

0.57( 0.59)

e torsion e bendi

c

ng

c

S

suggested by Shigl kek y

 

 



32 

From: Shigley and Mischke, Mechanical Engineering Design, 2001 
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Reliability factor ke 

The reliability factor accounts for the scatter of reference data such 

as the rotational bending fatigue limit Se
’. 

The estimation of the reliability factor is based on the assumption that 

the scatter can be approximated by the normal statistical probability 

density distribution. 

1 0.08
ae

zk   

The values of parameter za associated with various levels of 

reliability can be found in Table 7-7 in the textbook by Shigley et.al. 
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(source: S. Nishijima, ref. 39) 

S-N curves for assigned probability of failure; P - S - N curves 
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Stress concentration factor, Kt, and the 

notch factor effect, kf 

Fatigue notch factor effect kf depends on the stress 

concentration factor Kt  (geometry), scale and material 

properties and it is expressed in terms of the Fatigue Notch 

Factor Kf. 
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Stresses in prismatic notched body 
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Stress concentration factors used in fatigue 

analysis 
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Stress concentration 

factors, Kt, in shafts  

Bending load 

Axial load 

S = 

S = 
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S = 
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Similarities and differences between the stress field near the notch 

and in a smooth specimen 
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The Notch Effect in Terms of the Nominal Stress 
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The Neuber constant ‘ρ’ for steels and aluminium alloys 
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Curves of notch sensitivity index ‘q’ versus notch radius 

(McGraw Hill Book Co, from ref. 1)  
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Plate 1    
W1 = 5.0 in     
d1 = 0.5 in.     
Su = 100 ksi    
Kt = 2.7                                                                             
 
q = 0.97     
Kf1 = 2.65    

Illustration of the notch/scale effect 

Plate 2 

W2= 0.5 in 

d2 = 0.5 i  

Su = 100 ksi  

Kt = 2.7 

q = 0.78 

Kf1 = 2.32 
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Procedures for construction of approximate fully reversed 

S-N curves for smooth and notched components 

Nf (logartmic) 

Juvinal/Shigley method 

Nf (logartmic) 

Collins method 

Sar, ar – nominal/local 

stress amplitude at zero 

mean stress m=0 (fully 

reversed cycle)!  

f
’ 
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Procedures for construction of approximate fully reversed 

S-N curves for smooth and notched components 

Sar, ar – nominal/local stress amplitude at zero mean stress m=0 

(fully reversed cycle)!  
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NOTE! 

 

• The empirical relationships concerning the  S –N curve data are 

only estimates! Depending on the acceptable level of uncertainty 

in the fatigue design, actual test data may be necessary. 
 

• The most useful concept of the S - N method is the endurance 

limit, which is used in “infinite-life”, or “safe stress” design 

philosophy. 
 

• In general, the S – N approach should not be used to estimate 

lives below 1000 cycles  (N < 1000). 
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Constant amplitude cyclic stress histories 

Fully reversed 

m = 0,  R = -1 

Pulsating 

m = a   R = 0 

Cyclic 

m > 0   R > 0 
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Mean Stress Effect 
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The tensile mean stress is in general detrimental while the compressive mean stress is beneficial or 

has negligible effect on the fatigue durability. 

Because most of the S – N data used in analyses was produced under zero mean stress (R = -1) 

therefore it is necessary to translate cycles with non- zero mean stress into equivalent cycles with 

zero mean stress producing the same fatigue life.  

There are several empirical methods used in practice: 

The Hiagh diagram was one of the first concepts where the mean stress effect could be accounted 

for. The procedure is based on a family of Sa – Sm curves obtained for various fatigue lives. 

Steel AISI 4340,  

Sy = 147 ksi  (Collins) 



54 

Mean Stress Correction for Endurance Limit 

Gereber  (1874) 
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Mean stress correction for arbitrary stress 

amplitude applied at non-zero mean stress 

Gereber  (1874) 
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Comparison of various 

methods of accounting 

for the mean stress effect 

Most of the experimental data lies between the Goodman and the yield line! 
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Approximate Goodman’s diagrams for ductile 

and brittle materials 
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The following generalisations can be made when discussing 

mean stress effects: 

1. The Söderberg method is very conservative and seldom used. 

3. Actual test data tend to fall between the Goodman and Gerber curves. 

3. For hard steels (i.e., brittle), where the ultimate strength approaches the 

true fracture stress, the Morrow and Goodman lines are essentially the 

same.  For ductile steels (of > S,,) the Morrow line predicts less 

sensitivity to mean stress. 

4. For most fatigue design situations, R < 1 (i.e., small mean stress in 

relation to alternating stress), there is little difference in the theories. 

5. In the range where the theories show a large difference (i.e., R values 

approaching 1), there is little experimental data.  In this region the yield 

criterion may set design limits. 

6. The mean stress correction methods have been developed mainly for the 

cases of tensile mean stress. 

For finite-life calculations the endurance limit in any of the equations can be 

replaced with a fully reversed alternating stress level corresponding to that 

finite-life value! 
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Procedure for Fatigue Damage Calculation 
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n1 - number of cycles of stress range 1 

n2 - number of cycles of stress range 2 

ni - number of cycles of stress range i, 

1

1

1
D

N
 - damage induced by one cycle of stress range 1, 

1
1

1

n

n
D

N
 - damage induced by n1 cycles of stress range 1, 

2

2

1
D

N
 - damage induced by one cycle of stress range 2, 

2
2

2

n

n
D

N
 - damage induced by n2 cycles of stress range 2, 

1
i

i

D
N

 - damage induced by one cycle of stress range i, 

i
ni

i

n
D

N
 - damage induced by ni cycles of stress range i, 
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Total Damage Induced by the Stress History 

1 1 2 2

1 1 2 2
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It is usually assumed that fatigue failure occurs when the cumulative damage 

exceeds some critical value such as D =1, 

i.e.    if     D > 1    - fatigue failure occurs! 

For D < 1 we can determine the remaining fatigue life: 

1 1 2 2

1 1

....
R

i i

L
D n N n N n N

 
 

LR - number of repetitions of 

the stress history to failure 

 1 2 3
.....

R i
N L n n n n     N - total number of cycles to failure 
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 j
N  = a

m

j




         if     j > e .     
 

It is assumed that stress cycles lower than the fatigue limit, 
j
 < e, produce no damage (Nj=) in 

the case of constant amplitude loading however in the case of variable amplitude loading the 
extension of the S-N curve with the slope ‘m+2” is recommended. The total damage produced by 
the entire stress spectrum is equal to: 

1

j

j
j

D D


   

      

It is assumed that the component fails if the damage is equal to or exceeds unity, i.e. when D  1. 

This may happen after a certain number of repetitions, BL (blocks), of the stress spectrum, which 
can be calculated as: 
 

BL = 1/D. 
        

Hence, the fatigue life of a component in cycles can be calculated as: 
  

N = BLNT, 
       
where, NT is the spectrum volume or the number of cycles extracted from given stress history. 
 

NT = (NOP - 1)/2 
      

If the record time of the stress history or the stress spectrum is equal to Tr, the fatigue life can be 
expressed in working hours as: 
 

 T = BL Tr.       
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Main Steps in the S-N Fatigue Life Estimation Procedure 
 

• Analysis of external forces acting on the structure and the component 
in question, 

• Analysis of internal loads in chosen cross section of a component, 

• Selection of individual notched component in the structure, 

• Selection (from ready made family of S-N curves) or construction of S-
N curve adequate for given notched element (corrected for all effects), 

• Identification of the stress parameter used for the determination of the 
S-N curve (nominal/reference stress), 

• Determination of analogous stress parameter for the actual element in 
the structure, as described above, 

• Identification of appropriate stress history, 

•  Extraction of stress cycles (rainflow counting) from the stress history, 

• Calculation of fatigue damage, 

• Fatigue damage summation (Miner- Palmgren hypothesis), 

• Determination of fatigue life in terms of number of stress history 
repetitions, Nblck, (No. of blocks) or the number of cycles to failure, N. 

• The procedure has to be repeated several times if multiple stress 
concentrations or critical locations are found in a component or 
structure.  
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Stress History
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Example #2

An unnotched machine component undergoes a variable amplitude

stress history Si given below. The component is made from a steel

with the ultimate strength Suts=150 ksi, the endurance limit

Se=60 ksi and the fully reversed stress amplitude at N1000=1000

cycles given as S1000=110 ksi.

Determine the expected fatigue life of the component.

Data: Kt=1, SY=100 ksi  Suts=150 ksi, Se=60 ksi, S1000=110 ksi

The stress history:

Si = 0, 20, -10, 50, 10, 60, 30, 100, -70, -20, -60, -40, -80, 70, -30,

20, -10, 90, -40, 10, -30, -10, -70, -40, -90, 80, -20, 10, -20, 10, 0
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Stress History
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Example #2

An unnotched machine component undergoes a variable amplitude

stress history Si given below. The component is made from a steel

with the ultimate strength Suts=150 ksi, the endurance limit

Se=60 ksi and the fully reversed stress amplitude at N1000=1000

cycles given as S1000=110 ksi.

Determine the expected fatigue life of the component.

Data: Kt=1, SY=100 ksi  Suts=150 ksi, Se=60 ksi, S1000=110 ksi

The stress history:

Si = 0, 20, -10, 50, 10, 60, 30, 100, -70, -20, -60, -40, -80, 70, -30,

20, -10, 90, -40, 10, -30, -10, -70, -40, -90, 80, -20, 10, -20, 10, 0
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S-N Curve
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Goodman Diagram
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Calculations of Fatigue Damage 
 

a) Cycle No.11 
 

      Sa,r=87.93 ksi 
 

      N11= C( Sa,N)-m= 1.866102687.93-11.4=12805 cycles 
 

      D11=0.000078093 

 

b) Cycle No. 14 
 

      Sa,r=75.0 ksi 
 

      N14= C( Sa,N)-m= 1.866102675.0-11.4=78561 cycles 
 

      D14=0.000012729 

 

c) Cycle no. 15 
 

      Sa,r=98.28 ksi 
 

      N14= C( Sa,N)-m= 1.866102698.28-11.4=3606 cycles 
 

      D14=0.00027732 
       
 



70 

      Results of "rainflow" counting        D a m a g e 

No.  S  S m  S a S a,r (Sm=0)     D i =1/N i =1/C*S a 
-m 

1 30 5 15 15.52 2.0155E-13 0 

2 40 30 20 25.00 4.6303E-11 0 

3 30 45 15 21.43 7.9875E-12 0 

4 20 -50 10 10.00 1.3461E-15 0 

5 50 -45 25 25.00 4.6303E-11 0 

6 30 5 15 15.52 2.0155E-13 0 

7 100 20 50 57.69 6.3949E-07 0 

8 20 -20 10 10.00 1.3461E-15 0 

9 30 -25 15 15.00 1.3694E-13 0 

10 30 -55 15 15.00 1.3694E-13 0 

11 170 5 85 87.93 7.8039E-05 7.80E-05 

12 30 -5 15 15.00 1.3694E-13 0 

13 30 -5 15 15.00 1.3694E-13 0 

14 140 10 70 75.00 1.2729E-05 1.27E-05 

15 190 5 95 98.28 0.00027732 0.000277 

n 0 =15            D = 0.00036873 3.677E-04 

     D=0.000370      D=3.677E-04 

  L R  = 1/D =2712.03     L R  = 1/D =2719.61 

 N=n 0 *L R =15*2712.03=40680  N=n 0 *L R =15*2719.61=40794 


