

Device when activated from one form of energy & converting to another quantity.

or

Device which converts one physical quantity or condition to another usable form.

Physical quantity – heat, intensity of light, flow rate, liquid level, humidity etc

Sensor : sense physical quantity

Classification of transducers

- 1. Based on principle of transduction
- 2. Active & passive
- 3. Analog & digital
- 4. Inverse transducer

Based on principle used

- Thermo electric
- Magneto resistive
- Electro kinetic
- Optical

Passive transducer

Active transducer

- Device which derive power reqd. for transduction from auxiliary power source
- externally powered
- Without power they will not work
- Eg : resistive, inductive, capacitive

- No extra power reqd. to produce output
- Self generating
- Draw power from input applied
- Eg. Piezo electric transducer used for accelartion measurement

Analog transducer

- convert I/p quantity into an analog o/p
- Analog o/p- a continuous fn. Of time
- Eg. Strain gauge, L VDT, thermocouple

Digital transducer

• Converts I/p into an electrical o/p in the form of pulses

Inverse transducer

• Which converts electrical signal to physical quantity

Types of Analog Transducers :

• Electromechanical types – Potentiometric

resistance type, Electromagnetic, Electrodynamic, Eddy Current, Magnetostrictive, Variable Inductance, Linearly Variable Differential Transformer, Variable Capacitance, Piezo-Electric Transducer, Resistance Strain Gauges, Ionisation Transducers, Mechano Electronic Transducers.

• Opto-electrical types- Photo-Conductive Transducers, Photo-Volatic Transducers

Types of Analog Transducers :

- Frequency Generating Transducers
- Digital Encoders

Electromechanical Transducer

• In such transducer, an electrical output is produced due to an input of mechanical displacement or strain(Produced by primary sensor due to input physical variable like pressure, flow etc)

Conversion of input parameter to mechanical displacement

Advantages of electromechanical transducers

- Less power consumption & less loading on system to be measured
- Friction & mass inertia effect minimum.
- More compact instrumentation.
- Possibility of noncontact measurement.
- Good frequency & transient response
- feasibility of remote indication & recording
- Amplification greater than that produced by mechanical contrivance
- Possibility of mathematical processing of signals like summation, integration etc.