HEAT TRANSFER BY CONVECTION

CONDUCTION

Mechanism of heat transfer through a solid or fluid in the absence any fluid motion.

CONVECTION

Mechanism of heat transfer through a fluid in the presence of bulk fluid motion

- Natural (free) Convection
- Forced Convection

(depending on how the fluid motion is initiated)

CLASSIFICATION OF FLUID FLOWS

- Viscous-inviscid
 Internal flowExternal flow
 Open-closed channel
 CompressibleIncompressible
 Laminar-
- Turbulent
- Natural- Forced
- Steady- Unsteady
- One-,two-,threedimensional

VISCOSITY

When two fluid layers move relative to each other, a friction force develops between them and the slower layer tries to slow down the faster layer.

internal resistance to flow

- cohesive forces between the molecules in liquid
- molecular collisions in gases.

Viscous flows: viscous effects are significant

Inviscid flow regions: viscous forces are negligibly small compared to inertial or pressure forces.

- measure of stickness or resistance to deformation
 - **1. Kinematic viscosity**
 - 2. Dynamic viscosity

VISCOSITY DEPENDS ON

TEMPERATUREPRESSURE

For liquids dependence of pressure is negligibleFor gases kinematic viscosity depends on pressure since its relation to density

 $v = \frac{\mu}{c}$

Kinematic viscosity, m²/s or stroke

(c) Conduction

Convection heat transfer

- Dynamic viscosity
- Thermal conductivity
- Density
- Specific heat
- Fluid velocity
- Geometry
- Roughness
- Type of fluid flow

NEWTON'S LAW OF COOLING

$$\dot{Q}_{conv} = hA_S(T_S - T_\infty)$$
 (W)

h Convection heat transfer coefficient (W/m². $^{\circ}$ C)

The rate of heat transfer between a solid surface and a fluid per unit surface area per unit temperature difference

GENERAL THERMAL ANALYSIS

FORCED CONVECTION

• LAMINAR FLOW

Smooth streamlines Highly- ordered motion (highly viscous fluids in small pipes)

• TURBULENT FLOW

Velocity fluctuations Highly-disordered motion

• TRANSITIONAL FLOW

REYNOLDS NUMBER

 \boldsymbol{U}_m

Flow Regime:

Geometry

Surface roughness

Flow velocity

Surface temperature type of fluid

Ratio of the inertial forces to viscous forces in the fluid

$$\operatorname{Re} = \frac{\upsilon_m D}{\upsilon} = \frac{\rho \upsilon_m D}{\mu}$$

Mean flow velocity

D Characteristic length of the geometry

 $v = \mu / \rho$ Kinematic viscosity

Definition of Reynolds number

	$Re = \frac{Inertial forces}{Viscous forces}$
V _{avg} L	$= \frac{\rho V_{\rm avg}^2 L^2}{\mu V_{\rm avg} L}$
•	$= \frac{\rho V_{\text{avg}} L}{\mu}$
	$= \frac{V_{avg}L}{\nu}$

- Critical Reynolds number (Re_{cr}) for flow in a round pipe Re < 2300 ⇒ laminar 2300 ≤ Re ≤ 4000 ⇒ transitional Re > 4000 ⇒ turbulent
- Note that these values are approximate.
- For a given application, Re_{cr} depends upon
 - Pipe roughness
 - Vibrations
 - Upstream fluctuations, disturbances (valves, elbows, etc. that may disturb the flow)

HYDRAULIC DIAMETER

- For <u>non-round</u> pipes,
- the hydraulic diameter $D_h = 4A_c/P$
 - $A_c =$ cross-section area
 - P = wetted perimeter

Relative Uniform velocities approach of fluid layers velocity, V Zero velocity at the surface Solid block

No-slip condition

Velocity

THERMAL BOUNDARY LAYER

Flow region over the surface in which the temperature variation in the direction normal to the surface

Velocity profile influences temperature profile

VELOCITY

A flow field is best characterized by the velocity distribution, and velocity may vary in three dimension

 $\vec{\upsilon}(x, y, z)$ in rectangular $\vec{\upsilon}(r, \theta, z)$ in cylinderical coordinates

dimensional flow in a circular pipe

In which direction does the velocity change in this figure???

NUSSELT NUMBER

(Dimensionless number)

PRANDTL NUMBER

• Boundary layer theory

$$\Pr = \frac{\mu C_p}{k}$$

- Pr<<1 heat diffuses very quickly in liquid metals, *tb*/thicker
- Pr>>1 heat diffuses very slowly in oils relative to momentum, *tbl* thinner than *vbl*

PARALLEL FLOW OVER FLAT PLATES

$$\operatorname{Re}_{cr} = \frac{\rho \upsilon x_{cr}}{\mu} = 5 \times 10^5$$

$$Nu = \frac{hL}{k} = 0.664 \text{ Re}_{L}^{0.5} \text{ Pr}^{1/3}$$
 $\text{Re}_{L} < 5 \times 10^{5}$ laminar

$$Nu = \frac{hL}{k} = 0.037 \text{ Re}_{L}^{0.8} \text{Pr}^{1/3}$$
 $0.6 \le \text{Pr} \le 60$ turbulent

 $5 \times 10^5 \le \text{Re}_L \le 10^7$

NATURAL CONVECTION

CONVECTIVE HEAT TRANSFER COEFFICIENT

Prandtl number

Nusselt number

$$Nu = \frac{hL_C}{k} = CRa_L^n$$

Table 20-1