
Example 17.1 

Consider the following state space model: 

 

 

Then 

 

 

Hence, rank 0[A, C] = 2, and the system is 

completely observable. 



Example 17.8 

Consider 

 

 

Here 

 

 

Hence, rank 0[A, C] = 1 < 2, and the system is not 

completely observable. 



Duality 

We see a remarkable similarity between the results in 

Theorem 17.2 and in Theorem 17.3.  We can 

formalize this as follows: 

Theorem 17.4 (Duality). Consider a state space 

model described by the 4-tuple (A, B, C, D).  Then 

the system is completely controllable if and only if 

the dual system (AT, CT, BT, DT) is completely 

observable. 



Observable Decomposition 

The above theorem can often be used to go from a 

result on controllability to one on observability, and 

vice versa.  For example, the dual of Lemma 17.1 is 

the following: 

Lemma 17.4:  If  rank{0[A, C]} = k < n, there exists 

a similarity transformation T such that with              

                         then     and      take the form 

 

where      has dimension k and the pair               is 

completely observable. 
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The above result has a relevance similar to that of 

the controllability property and the associated 

decomposition.  To appreciate this, we apply the dual 

of Lemma 17.1 to express the (transformed) state 

and output equations in partitioned form as 

 

 

 

 

A pictorial description of these equations is shown 

on the next slide. 



Figure 17.2: Observable-unobservable decomposition 



The observable subspace of a plant is composed of 

all states generated through every possible linear 

combination of the states in     .  The stability of this 

subspace is determined by the location of the 

eigenvalues of      .  
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The unobservable subspace of a plant is composed of 

all states generated through every possible linear 

combination of the states in         The stability of this 

subspace is determined by the location of the 

eigenvalues of        .    
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Detectability 

A plant is said to be detectable if its unobservable 

subspace is stable. 



We remarked earlier that noncontrollable (indeed 

nonstabilizable) models are frequently used in 

control-system design. This is not true for 

nondetectable models.  Essentially all models used in 

the sequel can be taken to be detectable, without loss 

of generality. 



Observer Canonical Form 

There are also duals of the canonical forms given in 

Lemmas 17.2 and 17.3.  For example the dual of 

Lemma 17.3 is 

Lemma 17.5:  Consider a completely observable 

SISO system given by 

 

Then there exists a similarity transformation that 

converts the model to the observer-canonical form  





Canonical Decomposition 

Further insight into the structure of linear dynamical 

systems is obtained by considering those systems 

that are only partially observable or controllable.  

These systems can be separated into completely 

observable and completely controllable systems. 

The two results of Lemmas 17.1 and 17.4 can be 

combined as on the next slide. 



Canonical Decomposition Theorem 

Theorem 17.5:  (Canonical Decomposition Theorem).  

Consider a system described in state space form.  Then, 

there always exists a similarity transformation T such 

that the transformed model for                 takes the form  xx 1 T



Where 

(i) The subsystem                           is both completely  

 controllable and completely observable and has the  

 same transfer function as the original system.  
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(ii) The subsystem 

 

 

 

 is completely controllable. 



(iii) The subsystem 

 

 

 

 is completely observable. 



The canonical decomposition described above leads to 

Lemma 17.6:  Consider the transfer-function matrix 

H(s) satisfying 

 

Then 

 

where                 and        correspond to the observable 

and controllable part of the model.   
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Lemma 17.6 shows that the uncontrollable and the 

unobservable parts of a linear system do not appear in 

the transfer function. Conversely, given a transfer 

function, it is possible to generate a state space 

description that is both completely controllable and 

observable.  We then say that this state description is 

a minimal realization of the transfer function.  As 

mentioned earlier, nonminimal models are frequently 

used in control-system design to include disturbances. 



Controllability depends on the structure of the input 

ports:  where, in the system, the manipulable inputs 

are applied.  Thus the states of a given subsystem 

might be uncontrollable for one given input but 

completely controllable for another.  This distinction 

is of fundamental importance in control-system 

design, because not all plant inputs can be 

manipulated (consider, for example, disturbances) to 

steer the plant to reach certain states. 



Similarly, observability depends on which outputs 

are being considered.  Certain states may be 

unobservable from a given output, but they may be 

completely observable from some other output.  This 

also has a significant impact on output-feedback 

control systems, because some states might not 

appear in the plant output being measured and fed 

back.  However, they could appear in crucial internal 

variables and thus be important to the control 

problem. 



Pole-Zero Cancellation and 
System Properties 

The system properties described above are also 

intimately related to issues of pole-zero 

cancellations.  To facilitate the subsequent 

development, we introduce the following test, which 

is useful for studying issues of controllability and 

observability. 



PBH Test 

Lemma 17.7:  (PBH Test).  Consider a state space 

model (A, B, C). 

(i) The system is not completely observable if and only if there 

 exist a nonzero vector  x  n and a scalar     such that 

 

(ii) The system is not completely controllable if and only if there 

 exist a nonzero vector  x  n and a scalar     such that 

 

Proof:  See the book. 



We will use the preceding result to study the system 

properties of cascaded systems. 



Consider the cascaded system shown below. 

 

 

 

 

               

 

Figure 17.3:  Pole-zero cancellation 



We assume that u(t), u2(t), y1(t), y(t)  , that both 

subsystems are minimal, and that 

 System 1 has a zero at  and pole at ,  

 System 2 has a pole at  and zero at .  

Then the combined model has the property that 

 (a)  The system pole at  is not observable from Y, and 

 (b)  The system pole at  is not controllable from  u. 

The above results are readily established using the 

PBH test - see the book. 



Summary 

 State variables are system internal variables, upon which a 

full model for the system behavior can be built. The state 

variables can be ordered in a state vector. 

 Given a linear system, the choice of state variables is not 

unique - however, 

 the minimal dimension of the state vector is a system invariant, 

 there exists a nonsingular matrix that defines a similarity 

transformation between any two state vectors, and 

 any designed system output can be expressed as a linear 

combination of the state variables and the inputs. 



 For linear, time-invariant systems, the state space model is 

expressed in the following equations: 

               continuous-time systems 

 

  

  discrete-time systems, shift form  

 

 

 discrete-time systems, delta form 
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 Stability and natural response characteristics of the system can 

be studied from the eigenvalues of the matrix A or (Aq, A). 

 State space models faciclitate the study of certain system 

properties that are paramount in the solution to the control-

design problem. These properties relate to the following 

questions: 

 By proper choice of the input u, can we steer the system state to a desired 

state (point value)? (controllability) 

 If some states are uncontrollable, will these states generate a time-

decaying component? (stabilizability) 

 If one knows the input, u(t), for t  t0, can we infer the state at time t = t0 

by measuring the system output, y(t), for t  t0? (observability) 

 If some of the states are unobservable, do these states generate a time-

decaying signal? (detectability) 



 Controllability tells us about the feasibility of attempting to 

control a plant. 

 Observability tells us about whether it is possible to know 

what is happening inside a given system by observing its 

outputs. 

 The above system properties are system invariants. 

However, changes in the number of inputs, in their 

injection points, in the number of measurements, and in the 

choice of variables to be measured can yield different 

properties. 



 A transfer function can always be derived from a state 

space model. 

 A state space model can be built from a transfer-function 

model.  However, only the completely controllable and 

observable part of the system is described in that state 

space model.  Thus the transfer-function model might be 

only a partial description of the system. 



 The properties of individual systems do not necessarily 

translate unmodified to composed systems. In particular, given 

two systems completely observable and controllable, their 

cascaded connection 

 is not completely observable if a pole of the first system coincides with 

a zero of the second system (pole-zero cancellation), 

 is not detectable if the pole-zero cancellation affects an unstable pole, 

 is not completely controllable if a zero of the first system coincides with 

a pole of the second system (zero-pole cancellation), and 

 is not stabilizable if the zero-pole cancellation affects a NMP zero. 



 This chapter provides a foundation for the design 

requirement that one should never attempt to cancel 

unstable poles and zeros. 


