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Introduction 

• Backgrounds necessary for the analysis and design of 
discrete-time control systems in the z plane are 
presented. 
– The main advantage of the z transform method: it enables us to 

apply conventional continuous-time design methods to discrete-
time systems. 

 

• The chapter covers: 
– Mathematical representation of the sampling operation 

– The convolution integral method for obtaining the z transform 

– The sampling theorem based on the fact that the Laplace 
transform of the sampled signal is periodic 

– Mathematical modeling of digital controllers in terms of pulse 
transfer function 

– Realization of digital controllers and digital filters 



      

Impulse Sampling and Data Hold 

• Impulse Sampling 
– A fictitious sampler 

– The output of the sampler is a train of impulses. 
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Impulse Sampling and Data Hold 

• Impulse Sampling (cont.) 
– Let’s define a train of unit impulses: 

 

 

– The sampler may be considered a modulator with 

• The modulating signal: the input x(t) 

• The carrier : the train of unit impulses T(t) 
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Impulse Sampling and Data Hold 

• Impulse Sampling (cont.) 
– The Laplace transform of x*(t) 

 

 

 

 

 

– If we define                or  

 

 

 

– Hence we may write 
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Impulse Sampling and Data Hold 

• Impulse Sampling (cont.) 
– Summary 

• If the continuous-time signal x(t) is impulse sampled in a periodic 
manner, the sampled signal may be represented by  

 

 

 

 

• The Laplace transform of the impulse-sampled signal x*(t) has been 
shown to be the same as the z transform of signal x(t) if  
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Impulse Sampling and Data Hold 

• Data-Hold Circuits 
– Data-hold: a process of generating a continuous-time signal h(t) 

from a discrete-time sequence x(kT). 

– A hold circuit approximately reproduces the signal applied to the 
sampler. 

 

 

 

 

 

 

– The simplest data-hold: zero-order hold (clamper) 
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Impulse Sampling and Data Hold 

• Zero-Order Hold 
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Impulse Sampling and Data Hold 

• Zero-Order Hold (cont.) 
 A real sampler and zero-order 

hold 
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Impulse Sampling and Data Hold 

• Zero-Order Hold (cont.) 
 

Mathematical model: an impulse 

sampler and transfer function 
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Impulse Sampling and Data Hold 

• Transfer function of First-Order Hold 
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Impulse Sampling and Data Hold 

• Transfer function of First-Order Hold (cont.) 
– Derivation of the transfer function 
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Taking the Laplace transform  
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