Digital Control Systems

Continuous vs. Discrete Time

Continuous Controller

Digital Controller

Advantages

Disadvantages

- Improved sensitivity
- Use digital components
- Control algorithms easily modified
- Many systems inherently digital

- Develop complex math algorithms
- Lose information during conversions

Digital Control Systems: Zero-Order Hold

Digital Control Systems: Zero-Order Hold (cont)

Digital Control Systems: **The z-transform**

Def'n of z-Transform:

Z{f(t)} = F(z) =
$$\sum_{k=0}^{\infty} (f(kT) z^{-k})$$

Relationship b/w s-plane and z-plane:

 $z = e^{sT}$

Digital Control Systems: **The z-transform (cont)**

Several common z-Transforms

x(t)	X(s)	X(z)
u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	$\frac{\mathrm{Tz}}{\left(\mathrm{z}-1\right)^2}$
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z-e^{-aT}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$z \cdot \sin(\omega T)$ $z^2 - 2z \cdot \cos(\omega T) + 1$

Digital Control Systems: Stability in s-plane

Digital Control Systems: Stability in z-plane

Region of Stability:

Unit-Circle

Digital Control Systems: **Root-Locus**

 $\frac{Y(z)}{R(z)} = \frac{KG(z)D(z)}{1 + KG(z)D(z)}$

Digital Control Systems: **Root-Locus (cont)**

Digital Control Systems: MATLAB to the rescue

c2d

- conversion of continuous-time models to discrete time

zgrid

- generate z-plane grid lines for a root locus or polezero map over an existing map

dstep

- Step response of discrete time system

stairs

- Connects the elements from **dstep** to form stairstep graph

Digital Control Systems: Design Example *Root Locus Design for Digital DC Motor Position Control*

Digital Control Systems: Design Example

