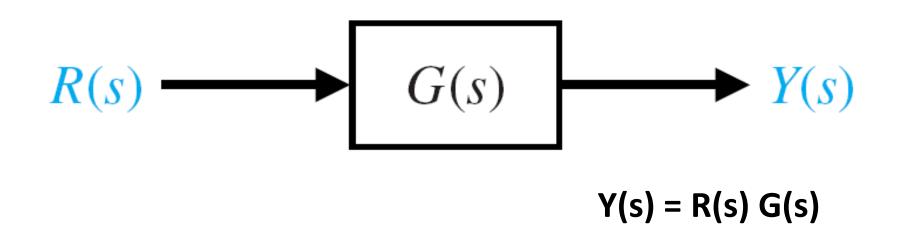
Steady-state response

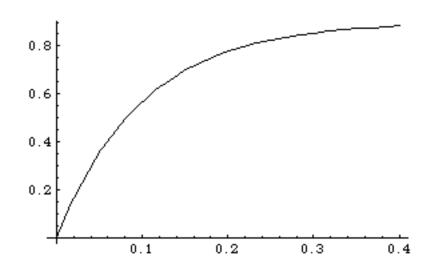
- If the steady-state response of the output does not agree with the steady-state of the input exactly, the system is said to have a steady-state error.
- It is a measure of system accuracy when a specific type of input is applied to a control system.



Steady-state error

T(s) = 9/(s + 10)

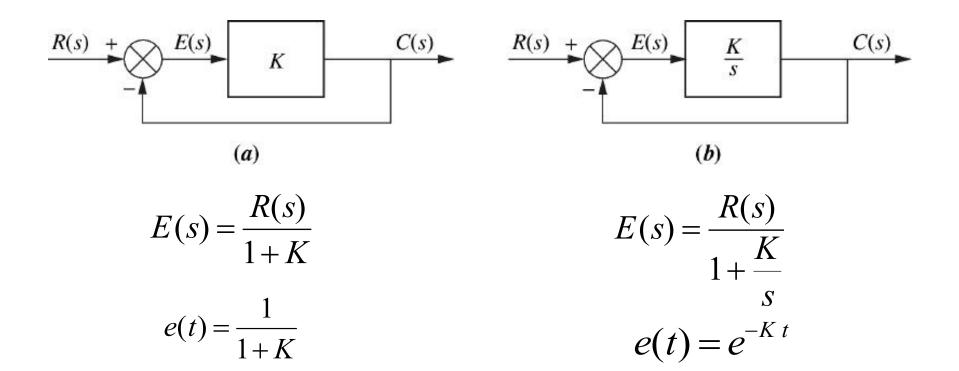
Y(s) = 9/s(s+10)



$$y(t) = 0.9(1 - e^{-10t})$$

$$y(\infty) = 0.9$$

E(s) = R(s) - Y(s)
$$e_{ss} = \lim_{s \to 0} s E(s) = 0.1$$



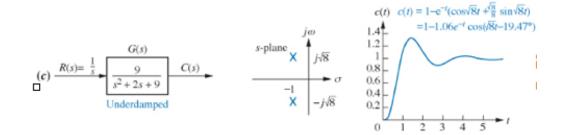
InverseLaplaceTransform
$$\left[\left\{\frac{1}{s+a}, \frac{a}{s+a}\right\}, s, t\right]$$

$$\{ E^{-(at)}, \frac{a}{E^{at}} \}$$

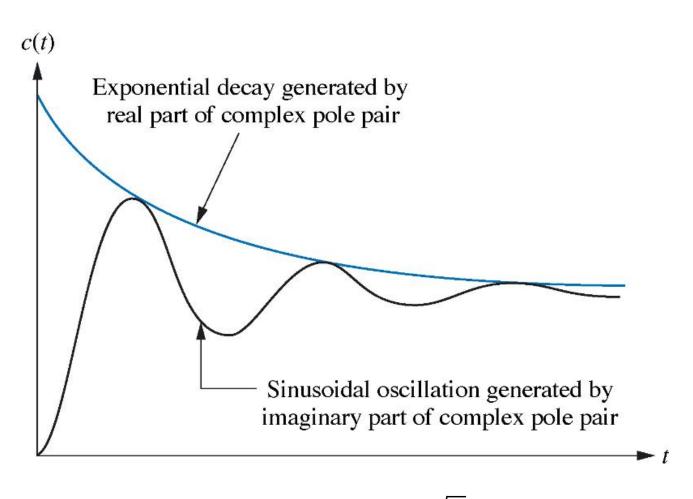
InverseLaplaceTransform
$$\left[\left\{\frac{1}{s} * \frac{1}{s+a}, \frac{1}{s} * \frac{a}{s+a}\right\}, s, t\right]$$

$$\{\frac{1-E^{-(at)}}{a}, 1-E^{-(at)}\}$$

Underdamped

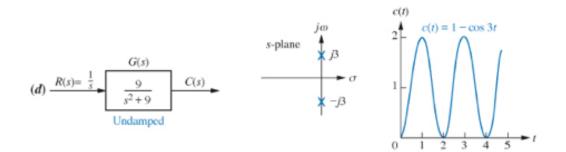


$$C(s) = \frac{9}{s(s^2 + 2s + 9)} = \frac{9}{s(s + 1 - j\sqrt{8})(s + 1 + j\sqrt{8})}$$
$$c(t) = 1 - e^{-t}(\cos\sqrt{8}t + \frac{\sqrt{8}}{8}\sin\sqrt{8}t)$$



 $c(t) = 1 - e^{-t} (\cos\sqrt{8}t + \frac{\sqrt{8}}{8}\sin\sqrt{8}t)$

Undamped

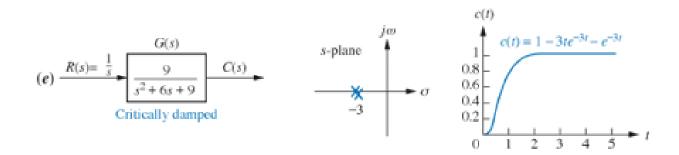


$$C(s) = \frac{9}{s(s^2 + 9)}$$

 $c(t) = 1 - \cos 3t$

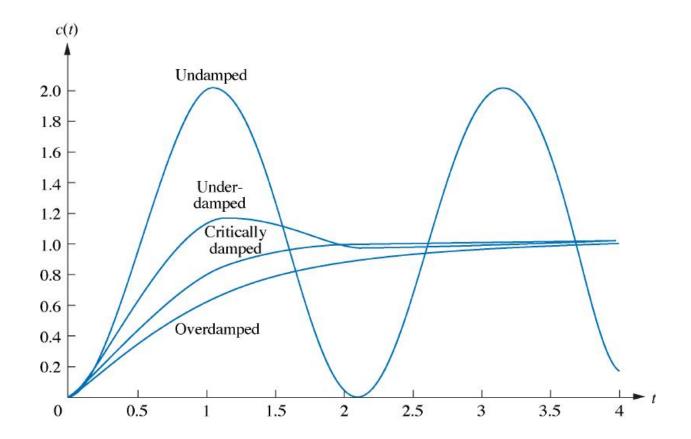
Control Systems

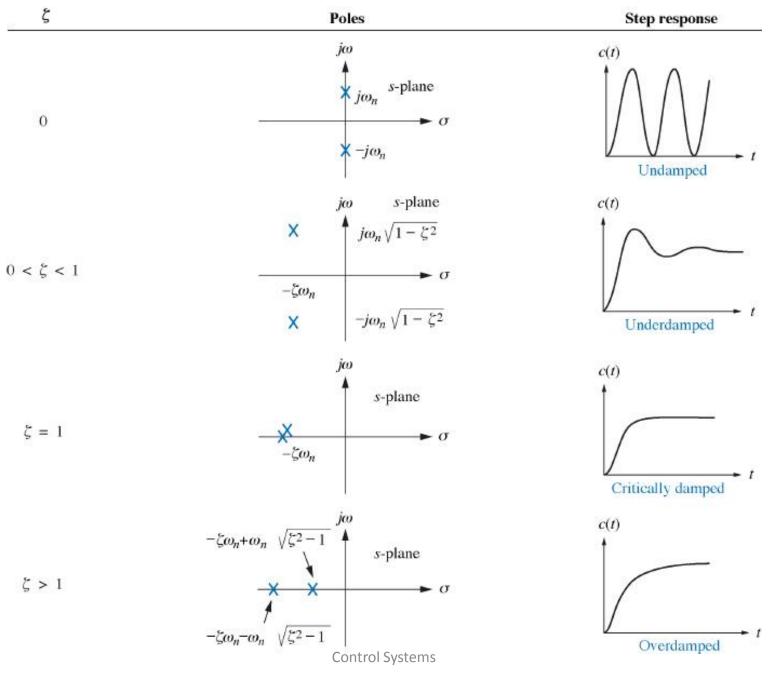
Critically damped



$$C(s) = \frac{9}{s(s^2 + 6s + 9)} = \frac{9}{s(s + 3)^2}$$
$$c(t) = 1 - 3te^{-3t} - e^{-3t}$$

Step response for second order system damping cases





fig_04_11

11

Summary

Overdamped

Poles: Two real at $-\sigma_1$, $-\sigma_2$

Underdamped

Poles: Two complex at $-\sigma_d + j\omega_d$, $-\sigma_d - j\omega_d$

Undamped

Poles: Two imaginary at $+ j\omega_1$, $- j\omega_1$

Critically damped

Poles: Two real at $-\sigma_1$,