Poles and zeros

1. A pole of the input function generates the form of the forced response (that is the pole at the origin generated a step function at the output).
2. A pole of the transfer function generate the form of the exponential response
3. The zeros and poles generate the amplitudes for both the transit and steady state responses (see A, B in partial fraction extension)

Poles and zeros of a first order system

Effect of a real-axis pole upon transient response

A pole on the real axis generate an exponential response of the form $\operatorname{Exp}[-\alpha t]$ where $-\alpha$ is the pole location on real axis. The farther to the left a pole is on the negative real axis, the faster the exponential transit response will decay to zero.

Evaluating response using poles

$$
\begin{aligned}
R(s)=\frac{1}{s} & \frac{(s+3)}{(s+2)(s+4)(s+5)} \\
C(s)= & \frac{K_{1}}{s}+\frac{K_{2}}{s+2}+\frac{K_{3}}{s+4}+\frac{K_{4}}{s+5} \\
c(t) & =K_{1}+K_{2} e^{-2 t}+K_{3} e^{-4 t}+K_{4} e^{-5 t}
\end{aligned}
$$

First order system

$$
C(s)=R(s) G(s)=\frac{a}{s(s+a)}
$$

$$
c(t)=1-e^{-a t}
$$

First-order system response to a unit step

Transient response specification for a firstorder system

1. Time-constant, 1/a

Can be described as the time for ($1-\operatorname{Exp}[-\mathrm{a} t]$) to rise to 63% of initial value.

1. Rise time, $\mathrm{T}_{\mathrm{r}}=2.2 / \mathrm{a}$

The time for the waveform to go from 0.1 to 0.9 of its final value.
3. Settling time, $T_{s}=4 / a$

The time for response to reach, and stay within, $\mathbf{2 \%}$ of its final value

Transfer function via laboratory testing

Identify K and a from testing

The time for amplitude to reach 63% of its final value:
$63 \times 0.72=0.45$, or about $0.13 \mathrm{sec}, a=1 / 0.13=7.7$

From equation, we see that the forced response reaches a steady-state value of $K / a=0.72$.
$\mathrm{K}=0.72 \times 7.7=5.54$

$$
G(s)=5.54 /(s+7.7) .
$$

