Block diagram Reduction Technique

Block Diagram

- It represents the structure of a control system.
- It helps to organize the variables and equations representing the control system.

It is composed of:

- boxes, that represents the components of the system including their causality;
- Lines with arrows, that represent the actual dynamic variables, such as speed, pressure, velocity, etc..

Simplest Open-Loop Control Example \& Associated Block Diagrams

Spring/mass system

- System = mass + spring
- Control Input: force u
- Output: displacement $x(t)$
- Block diagram (derived using Laplace transforms, more on this later)
- Component block diagram for the system examined

Specific \& Generic Component Block Diagrams

Recall previous system

- Control Input: force u
- Output: displacement $x(t)$

Component block diagram for the system examined

Generic component block diagram

Definitions of Process, Actuator \& Plant

- Process = component whose the output is to be controlled

Ex: Mass

- Actuator $=$ device that can influence the control input variable of the process

Ex: Spring

- Plant = actuator + process

Ex: Spring/mass system

Figure 2.2

Components of a block diagram f

$$
\xrightarrow{R(s)} \xrightarrow[\substack{\text { Signals } \\(\boldsymbol{a})}]{C(s)} \xrightarrow[\text { Input }]{\substack{\text { In }}} \underset{\substack{\text { System } \\(\boldsymbol{b})}}{G(s)} \xrightarrow[\text { Output }]{C(s)}
$$

Summing junction
(c)

Pickoff point
(d)

Figure 2.3
 a. Cascaded subsystems; b. equivalent transfer function

(a)

(b)

Figure 2.4

Loading in cascaded systems

(b)

$$
G_{T}(s)=\frac{V_{2}(s)}{V_{i}(s)} \neq G_{2}(s) G_{1}(s)
$$

(c)

$$
G_{T}(s)=\frac{V_{2}(s)}{V_{i}(s)}=K G_{2}(s) G_{1}(s)
$$

(d)

Figure 2.5

a. Parallel subsystems;

 b. equivalent transfer function
(a)

Figure 2.6

a. Feedback control system; b. simplified model;

c. equivalent transfer function

Figure 2.7

Block diagram algebra for summing junctionsa. to the left past a summing junction; b. to the right past a summing junction

Figure 2.8

 Block diagram algebra for pickoff pointsequivalent forms for moving a blocka. to the left past a pickoff point; b. to the right past a pickoff point

(a)

(b)

Figure 2.9

Block diagram for Example5.1

Figure 2.10

Steps in solving Example 5.1:
a. collapse summing junctions;
b. form equivalent cascaded system in the forward path and equivalent parallel system in the feedback path; c. form equivalent feedback system and multiply by cascaded $\mathrm{G}_{1}(\mathrm{~s})$

(a)

(b)

(c)

Figure 2.11

Block diagram for Example 5.2

(a)

(b)

(c)

