PNEUMATIC CONTROLLERS

Introduction

- Pneumatic controls are powered by compressed air.
- Pneumatic Process control are safer than Electronic and controller's, when used in Explosive atmosphere like Chemical or Petrochemical plats.

Closed Lop Control

Controller
Actuator
Measuring Device
(SP-Set Point, PV= Process variable)

Pneumatic Controllers

• 1. Flapper Nozzle

• 2. Volume Booster

• 3. Force Balance Principle

1. Flapper Nozzle

- The heart of all pneumatic process control devices is a device to convert a small displacement into a pressure change.
- This displacement is based on the Flapper Nozzle.

Simple Differential Pressure Transducer

• 2. Volume Booster

2. Volume Booster

 When Pressure given as input then linearly related pressure as output is obtained with an ability to supply a large volume of air.

3. Force Balance Principle

1. Air Relay

 An increase in input signal cause air to pas from the supply to the load, while a decreasing input signal cause air to vent from the load.

2. Balance Principle

 The force from the feedback bellows match the force from the input signal bellows and output pressure directly proportional to (P1-P2) **PNEUMATIC CONTROLLER** From the figure 1, closed loop control $OP = K \times ERROR$ $= K \times (SP - PV)$ (where K is Gain)

Proportional only Controller (Simplest Pneumatic Controller)

Proportional plus Integral controller (P + I)

(b) Step response

 Any output signal an error exist this error is called Offset Error.

$$OP = K \left(error + \frac{1}{T} \int error dt \right)$$

Proportional plus Integral controller plus Derivative Time(P + I + D)

$$OP = K \left(error + \frac{1}{T_i} \int error \, dt + T_d \frac{d \, error}{dt} \right)$$

Where D is Derivative Time (User Adjustable)