#### Outline

Spring Functions & Types
Helical Springs
Compression
Extension
Torsional



# The Function(s) of Springs

#### Most fundamentally: to STORE ENERGY



Many springs can also: push pull twist

#### Some Review



linear springs: k=F/y  
nonlinear springs: 
$$k = \frac{dF}{dy}$$



$$k_{total} = k_1 + k_2 + k_3$$



Torsion

Extension

## More Springs

Washer Springs:









finger

curved

Beams:

Power springs:







## Helical Compression Springs

number of coils  $= N_t$ 



| d              | diameter of wire   |
|----------------|--------------------|
| D              | mean coil diameter |
| f              | free length        |
| D C            | pitch              |
| N <sub>t</sub> | Total coils        |
| -              |                    |

may also need:  $D_o$  and  $D_i$ 

# Length Terminology



#### End Conditions



#### **Stresses in Helical Springs**



#### **Curvature Stress**

Inner part of spring is a stress concentration

(see Chapter 4)

K<sub>w</sub> includes both the direct shear factor and the stress concentration factor

$$\tau_{\max} = K_w \frac{8FD}{\pi d^3}, \quad where \ K_w = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$$

- under static loading, local yielding eliminates stress concentration, so use K<sub>s</sub>
- under dynamic loading, failure happens below S<sub>y</sub>: use K<sub>s</sub> for mean, K<sub>w</sub> for alternating

### Spring Deflection

 $y \approx \frac{8FD^3N_a}{d^4G}$ 





Helical Springs

Compression
Nomenclature
Stress
Deflection and Spring Constant
Static Design
Fatigue Design
Extension
Torsion

Static Spring Design

- Inherently iterative
  - Some values must be set to calculate stresses, deflections, etc.
- ✤ Truly <u>Design</u>



≻there is not one "correct" answer

must synthesize (a little bit) in addition to analyze

Material Properties

◆ S<sub>ut</sub> ultimate tensile strength
 ➢ Figure 13-3
 ➢ Table 13-4 with S<sub>ut</sub>=Ad<sup>b</sup>

◆ S<sub>ys</sub> torsional yield strength
 ▶ Table 13-6 – a function of S<sub>ut</sub> and set

## Spring/Material Treatments

- Setting
  - verstress material in same direction as applied load
    - » increase static load capacity 45-65%
    - » increase energy storage by 100%
  - $\succ$  use K<sub>s</sub>, not K<sub>w</sub> (stress concentration relieved)
- Load Reversal with Springs
- Shot Peening
  - What type of failure would this be most effective against?

## What are You Designing?



#### Safety factor is > 1 Spring will not buckle Spring will fit in hole, over pin, within vertical space

- often can calculate from given
- \*\* often given/defined

## Static Spring Flow Chart

if GIVEN F,y, then find k; If GIVEN k, y, then find F



Static Design: Wire Diameter  

$$\tau_{\max} = K_s \frac{8FD}{\pi d^3} \qquad y \approx \frac{8FD^3 N_a}{d^4 G}$$

<u>Based on  $N_s = S_{sv}/\tau$  and above equation for  $\tau$ :</u>

$$d = \left\{ \frac{8N_s(C+0.5)[F_{work}(1+\alpha) - F_{initial}(\alpha)]}{\pi K_m A} \right\}^{1/(2+b)}$$

use Table 13-2 to select standard *d* near calculated *d*  $K_m = S_{vs}/S_{ut}$ 

\*maintain units (in. or mm) for A, b

# Buckling



Helical Springs

Compression
Nomenclature
Stress
Deflection and Spring Constant
Static Design
Fatigue Design
Extension
Torsion

## Material Properties

- S<sub>us</sub> *ultimate shear strength* S<sub>us</sub>≈0.67 S<sub>ut</sub>
- S<sub>fw</sub> torsional fatigue strength
  - > Table 13-7 -- function of  $S_{ut}$ , # of cycles
  - repeated, room temp, 50% reliability, no corrosion
- Sew torsional endurance limit
  - $\succ$  for steel, d < 10mm
  - see page 816 (=45 ksi if unpeened, =67.5 ksi if peened)
  - > repeated, room temp., 50% reliability, no corrosion

#### Modified Goodman for Springs





...on page 828

## What are you Designing?



#### Such that:

Fatigue Safety Factor is > 1 Shut Static Safety Factor is > 1 Spring will not buckle Spring is well below natural frequency Spring will fit in hole, over pin, within vertical space

- often can calculate from Given
- \*\* often given/defined

## Fatigue Spring Design Strategy

if GIVEN F,y, then find k; If GIVEN k, y, then find F



## Fatigue Design:Wire Diameter

as before, you can iterate to find d, or you can use an equation derived from relationships that we already know:

$$d = \left\{ \frac{8CN_{fs}}{0.67\pi A} \left[ K_s F_m - \frac{N_{fs} - 1}{N_{fs}} K_s F_{\min} + \left( 1.34 \frac{Ad^b}{S_{fw}} - 1 \right) K_w F_a \right] \right\}^{1/(2+b)}$$
  
use Table 13-2 to select standard *d* near  
calculated *d*

Two things to know:shortcut to finding dhow to check frequency

\*maintain units (in. or mm) for A, b \*\*see Example 13-4A on MathCad CD

### Natural Frequency: Surge

Surge == longitudinal resonance

for fixed/fixed end conditions:

$$f_n = \frac{1}{2} \sqrt{\frac{kg}{W_a}} \qquad \text{(Hz)}$$

ideally, f<sub>n</sub> will be at least 13x more than f<sub>forcing</sub>... it should definitely be multiple times bigger

Two things to know:

shortcut to finding dhow to check frequency

...see pages 814-815 for more

### **Review of Design Strategy**

#### **ITERATIVE**

Find Loading Select C, d

Find stresses Determine material properties Find safety factor

#### **USING d EQUATION**

Find Loading Select C, safety factor

Solve for d, pick standard d Find stresses Determine material properties Check safety factor

## Strategy Review Continued

Find spring constant, N<sub>a</sub>, N<sub>t</sub>

Find  $F_{SHUT}$  (must find lengths and y's to do this) Find static shut shear stress and safety factor

Check Buckling

Check Surge

Check  $D_i$ ,  $D_o$  if pin to fit over, hole to fit in

#### Consider the Following:



Helical Springs

- Compression
  - Nomenclature
  - Stress
  - Deflection and Spring Constant
  - Static Design
  - ► Fatigue Design
- Extension
- Torsion

# Extension Springs



As before, 4 < C < 12



surge check is same as before

However, no peening, no setting, no concern about buckling

#### **Difference 1: Initial Force**



#### Difference 1a: Deflection

 $y \approx \frac{8(F - F_i)D^3N_a}{d^4G}$ 

#### **Difference 2: Initial Stress**



take initial stress as the average stress between these lines, then find  ${\rm F}_{\rm i}$ 

#### Difference 3: Ends!: Bending



#### Difference 3a: Ends: Torsion



pick a value >4

#### Materials

★ S<sub>ut</sub> – Same
★ S<sub>ys</sub>, S<sub>fw</sub>, S<sub>ew</sub> – same for body
★ S<sub>ys</sub>, S<sub>fw</sub>, S<sub>ew</sub> – see Tables 13-10 and 13-11 for ends

## Strategy

similar to compression + end stresses - buckling



Helical Springs

- Compression
  - Nomenclature
  - Stress
  - Deflection and Spring Constant
  - Static Design
  - ► Fatigue Design
- Extension
- Torsion

## **Torsion Springs**

• close-wound, always load to close



#### **Deflection & Spring Rate**

 $\begin{aligned} \theta_{rev} &= \frac{1}{2\pi} \frac{ML_w}{EI}, \qquad L_w = length \, of \, wire = \pi DN_a \\ \theta_{rev,roundwire} &= 10.8 \frac{MDN_a}{d^4 E} \end{aligned}$ 

$$k = \frac{M}{\theta_{rev}}$$

#### Stresses

<u>Compressive is Max – Use for Static – Inside of Coil</u>

$$\sigma_{i_{\max}} = K_{b_i} \frac{M_{\max}c}{I} = K_{b_i} \frac{32M_{\max}}{\pi d^3}$$

$$K_{b_i} = \frac{4C^2 - C - 1}{4C(C - 1)}$$

For Fatigue – Slightly lower Outside Tensile Stress – Outside of Coil

$$\sigma_{o_{\max}} = K_{b_o} \frac{32M_{\max}}{\pi d^3} \qquad \sigma_{o_{\min}} = K_{b_o} \frac{32M_{\min}}{\pi d^3}$$
$$K_{b_o} = \frac{4C^2 + C - 1}{4C(C+1)}$$

