Fundamentals

- Velocity
 - fpm

$$V = \frac{Q}{A}$$

• Velocity Pressure
- in. w.g.
$$p_v = \left(\frac{V}{4005}\right)^2$$

Fundamentals

- Static Pressure
 - Total Pressure Velocity Pressure
- Total Pressure (loss)
 - Darcy Weisbach Equation

$$\Delta p = \left(\frac{12fL}{D_h} + \Sigma C\right) \rho \left(\frac{V}{1097}\right)^2$$

Pressure Changes

Design Procedures

- Arrange outlets/inlets
- Adjust calculated air quantities for
 - Heat gain/loss
 - Leakage
 - Duct
 - Equipment (VAV box)
 - Accessories (dampers, sensors, access doors, etc.)
 - Space pressurization

Design Procedures

- Select outlet sizes based on manufacturer's data
- Sketch the system (connect the dots)
- Divide the system into sections
 - Section is any change in flow, size, shape
- Size the system using required/preferred method

Design Procedures

- Calculate the system total pressure loss
- Layout the system in detail
 - Space limitations
 - Obstructions/coordination concerns
- Resize duct sizes to balance
- Analyze noise levels
 - Use sound attenuation where necessary

• Equal Friction

- Size ductwork based on a constant pressure loss per unit length (.08-.1 in. w.g. per 100 ft.)
- Larger sizes require less energy but have a higher initial cost
- Smaller sizes require more energy but will have a reduced initial cost.
- Practical for simple systems
- Duct Calculators

• Static Regain

- Obtain the same static pressure at diverging flows
 - Change duct sizes down stream
- Iterative process best handled by computers
- Start the process by selecting a maximum velocity in the "root section"
- Higher velocities require more energy but have a lower initial cost
- Lower velocities require less energy but have a higher initial cost

• T-method

- Calculation intensive (use software)
- Considers current building costs, energy costs and future costs.
- The calculation process involves:
 - condensing the system
 - fan selection (the simulation uses actual fan curves)
 - expanding the system

Extended Plenum

- 1-6 in. w.g. systems
- Duct velocity up to 3000 fpm
- Branch velocity should not exceed trunk velocity
- Balancing dampers should be used at each branch
- Can result in low velocities
 - Excessive heat gain/loss

- Extended Plenum
 - Low operating cost
 - Easier to balance
 - Less fittings
 - Easy to modify for (tenant changes)

- Constant Velocity
 - Used primarily for material conveyance
 - Maintain sufficient velocities to suspend material
 - Converging flows should offset

Stack Effect

- Height of the building
- Elevator shafts, stairwells, other shafts
- Wind effect
 - Prevailing wind direction
 - Shape of building and nearby objects
 - Location of intakes and exhausts

Inlet and outlet conditions

- Fan curves are "ideal"
- Inlet conditions to avoid
 - Pre-rotation
 - Turbulent flow
- Can not be correct by simply adding to the required pressure
- Results in a new curve

• Inlet and outlet conditions

• Fan system effect

COUNTER-ROTATING SWIRL

INLET DUCT CONNECTIONS CAUSING INLET SPIN

TURNING IMPELLER VANES

> CORRECTED COUNTER-ROTATING SWIRL

CORRECTIONS FOR INLET SPIN

- Fan system effect
- Difficult to asses
- Approximations exist (ASHRAE Duct Fitting Database)
- Experience

• Flex Duct

- The contractor wants to use a different type of elbow, is that OK?
 - It depends on the location in the system
 - What type of fitting is the proposed replacement?
 - What are the actual losses in the system?
 - Velocity pressure
 - Loss coefficient

Fittings

Comments

- Avoid using extractors
 - Poor airflow
 - Noise
- Use an elbow for the final branch in a duct run.
 - Cushion effect
- Boot taps
 - Best performance for cost

- If it is good for airflow it is usually good for acoustics.
- Three components:
 - Source
 - Path
 - Receiver

• Easy Math

Difference	Add to higher level
0 to 1 dB	3 dB
2 to 4 dB	2 dB
5 to 9 dB	1 dB
10-plus dB	0 dB

- Weighting
 - Human ear is less sensitive to low and high frequencies
 - More sensitive to mid-frequencies

- A-Weighting
 - Usually used for outdoor sound calculations
- NC
 - Sound is fitted to a curve
 - Based on 8 frequencies
 - Does not evaluate the overall shape of the curve
 - Most used method
 - NC-35
 - 63 Hz 8K Hz

- ROOM CRITERIA Mark II (RC)
- Evaluates the shape
- Currently ASHRAE'S preferred method

- Start with quiet equipment
- Locate air-handling equipment in less sensitive areas
- Allow for proper fan outlet conditions
 - Rectangular length 1.5 x largest dimension
 - Round length 1.5 x diameter

- Use radiused elbows where possible
- Larger ductwork reduces velocity and reduces generated noise
- Avoid abrupt changes in layout
- Place dampers away from outlets
- Flexible connections to equipment

- Power splits
 - Ratio of areas
 - $L1 = 10 \times \log (A1 \div (A1 + A2))$
 - $L2 = 10 \times \log (A2 \div (A1 + A2))$
 - Units dB, applies across all frequencies, straight subtraction

Low Frequency Noise

- Breakout Break in
- Rectangular
 - Where breakout noise is beneficial
 - Do not use where break in noise is a concern
- Round
 - Does not allow as much breakout
 - Does not allow as much break in
- Thicker liner attenuates lower frequencies

- Medium-High frequency
 - Easier to attenuate than low
 - Lined or double walled duct
 - Lengthen runs if necessary
 - Silencers

Silencers

- Can be very effective at attenuating sound
 - Insertion loss
- Pressure drops
- Generated noise
- Elbow
- Locate in the wall or as close as possible
- Do not locate right off of a fan

- Reactive silencers
 - Low to no pressure drops
- Dissipative
 - No fill use baffles and "chambers"