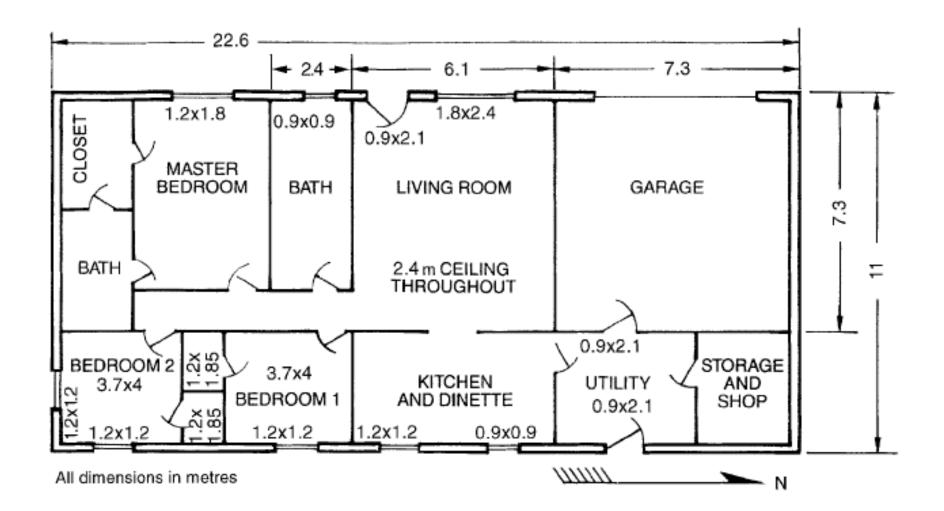
Contents

- Basic Concepts
- Outdoor Design Conditions
- Indoor Design Criteria
- Cooling Load Principles
- Cooling Load Components
- Heating Load

• Thermal load

- The amount of heat that must be added or removed from the space to maintain the proper temperature in the space
- When thermal loads push conditions outsider of the comfort range, HVAC systems are used to bring the thermal conditions back to comfort conditions

- Purpose of HVAC load estimation
 - Calculate peak design loads (cooling/heating)
 - Estimate likely plant/equipment capacity or size
 - Provide info for HVAC design e.g. load profiles
 - Form the basis for building energy analysis
- Cooling load is our main target
 - Important for warm climates & summer design
 - Affect building performance & its first cost



• Heat transfer mechanism

- Conduction
- Convection
- Radiation
- Thermal properties of building materials
 - Overall thermal transmittance (U-value)
 - Thermal conductivity
 - Thermal capacity (specific heat)

- A building survey will help us achieve a realistic estimate of thermal loads
 - Orientation of the building
 - Use of spaces
 - Physical dimensions of spaces
 - Ceiling height
 - Columns and beams
 - Construction materials
 - Surrounding conditions
 - Windows, doors, stairways

- Building survey (cont'd)
 - People (number or density, duration of occupancy, nature of activity)
 - Lighting (W/m², type)
 - Appliances (wattage, location, usage)
 - Ventilation (criteria, requirements)
 - Thermal storage (if any)
 - Continuous or intermittent operation

- They are used to calculate design space loads
- Climatic design information
 - General info: e.g. latitude, longitude, altitude, atm. pressure
 - Outdoor design conditions
 - Derived from statistical analysis of weather data
 - Typical data can be found in handbooks/databooks, such as ASHRAE Fundamentals Handbooks

- Climatic design conditions from ASHRAE
 - Previous data & method (before 1997)
 - For Summer (Jun. to Sep.) & Winter (Dec, Jan, Feb)
 - Based on 1%, 2.5% & 5% nos. hours of occurrence
 - New method (ASHRAE Fundamentals 2001):
 - Based on <u>annual</u> percentiles and cumulative frequency of occurrence, e.g. 0.4%, 1%, 2%
 - More info on coincident conditions
 - Findings obtained from ASHRAE research projects
 - Data can be found on a relevant CD-ROM

Recommended Outdoor Design Conditions for Hong Kong

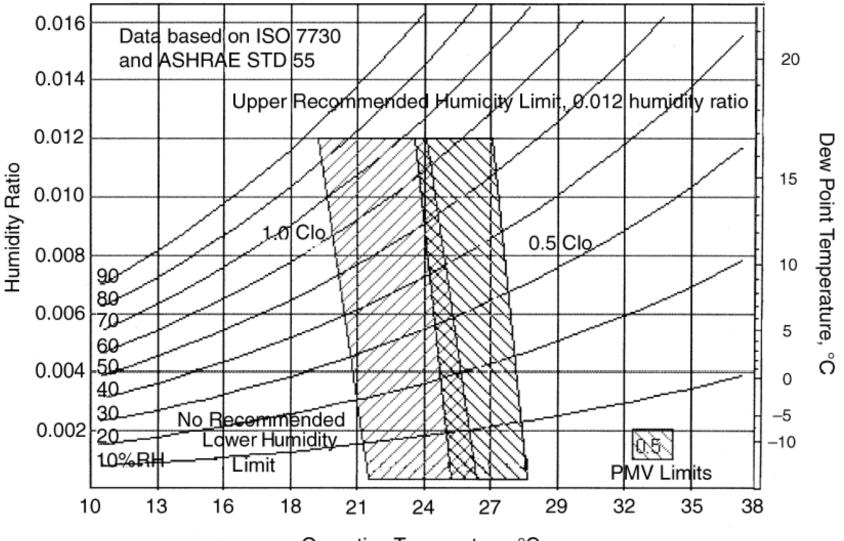
Location	Hong Kong (latitude 22° 18′ N, longitude 114° 10′ E, elevation 33 m)							
Weather station	Royal Observatory Hong Kong							
Summer months	June to September (four hottest months), total 2928 hours							
Winter months	December, January & February (three coldest months), total 2160 hours							
Design temperatures:	For comfort Hy summer 2.5% or a winter 97.5% or a	nnualised 1% and	For critical processes (based on summer 1% or annualised 0.4% and winter 99% or annualised 99.6%)					
	Summer	Winter	Summer	Winter				
DDB / CWB	32.0 °C / 26.9 °C	9.5 °C / 6.7 °C	32.6 °C / 27.0 °C	8.2 °C / 6.0 °C				
CDB / DWB	31.0 °C / 27.5 °C	10.4 °C / 6.2 °C	31.3 ℃ / 27.8 ℃	9.1 ℃ / 5.0 ℃				
Extreme temperatures:	Hottest month: July mean DBT = 28.6 °C absolute max. DBT = 36.1 °C mean daily max. DBT = 25.7 °C		Coldest month: January mean DBT = 15.7 °C absolute min. DBT = 0.0 °C mean daily min. DBT = 20.9 °C					
Diurnal range:	Summer	Winter	Whole year					
- Mean DBT	28.2	16.4	22.8					
- Daily range	4.95	5.01	5.0					
Wind data:	Summer	Winter	Whole year	1				
- Wind direction	090 (East)	070 (N 70° E)	080 (N 80° E)					
Wind speed	5.7 m/s	6.8 m/s	6.3 m/s					

Note: 1. DDB is the design dry-bulb and CWB is the coincident wet-bulb temperature with it; DWB is the design wet-bulb and CDB is the coincident dry-bulb with it.

- The design temperatures and daily ranges were determined based on hourly data for the 35-year period from 1960 to 1994; extreme temperatures were determined based on extreme values between 1884-1939 and 1947-1994.
- 4. Wind data are the prevailing wind data based on the weather summary for the 30-year period 1960-1990. Wind direction is the prevailing wind direction in degrees clockwise from north and the wind speed is the mean prevailing wind speed.

- Climatic design conditions (ASHRAE 2001):
 - Heating and wind design conditions
 - Heating dry-bulb (DB) temp.
 - Extreme wind speed
 - Coldest month wind speed (WS) & mean coincident dry-bulb temp. (MDB)
 - Mean wind speed (MWS) & prevailing wind direction (PWD) to DB
 - Average of annual extreme max. & min. DB temp. & standard deviations

- Climatic design conditions (ASHRAE):
 - Cooling and dehumidification design conditions
 - <u>Cooling DB/MWB</u>: Dry-bulb temp. (DB) + Mean coincident wet-bulb temp. (MWB)
 - <u>Evaporation WB/MDB</u>: Web-bulb temp. (WB) + Mean coincident dry-bulb temp. (MDB)
 - <u>Dehumidification DP/MDB and HR</u>: Dew-point temp.
 (DP) + MDB + Humidity ratio (HR)
 - Mean daily (diurnal) range of dry-bulb temp.



- Other climatic info:
 - Joint frequency of temp. and humidity
 - Annual, monthly and hourly data
 - Degree-days (cooling/heating) & climatic normals
 - To classify climate characteristics
 - Typical year data sets (1 year: 8,760 hours)
 - For energy calculations & analysis

Indoor Design Criteria

- Basic design parameters: (for thermal comfort)
 - Air temp. & air movement
 - Typical: summer 24-26 °C; winter 21-23 °C
 - Air velocity: summer < 0.25 m/s; winter < 0.15 m/s
 - Relative humidity
 - Summer: 40-50% (preferred), 30-65 (tolerable)
 - Winter: 25-30% (with humidifier); not specified (w/o humidifier)
 - See also ASHRAE Standard 55-2004
 - ASHRAE comfort zone

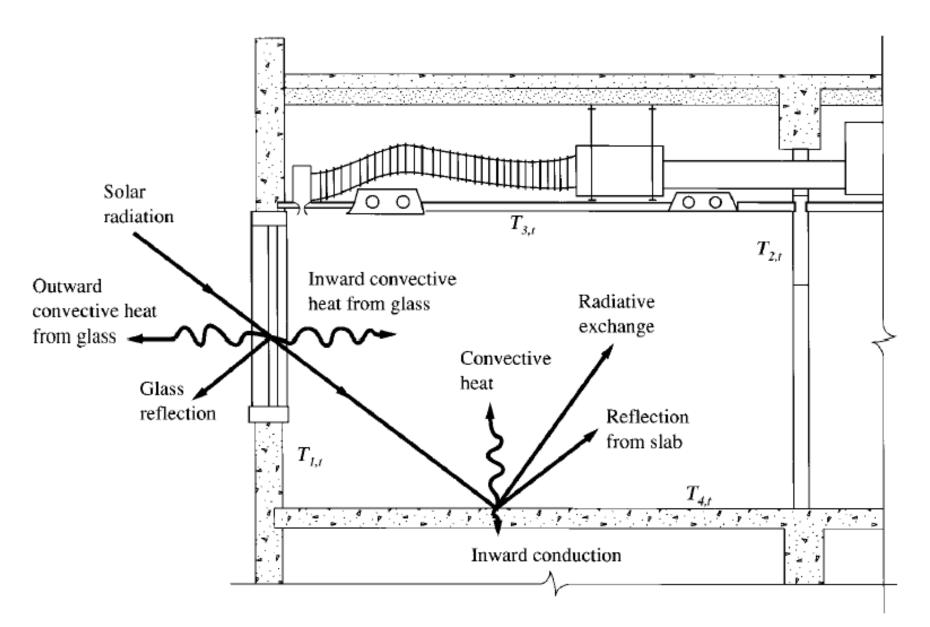
Operative Temperature, °C

Indoor Design Criteria

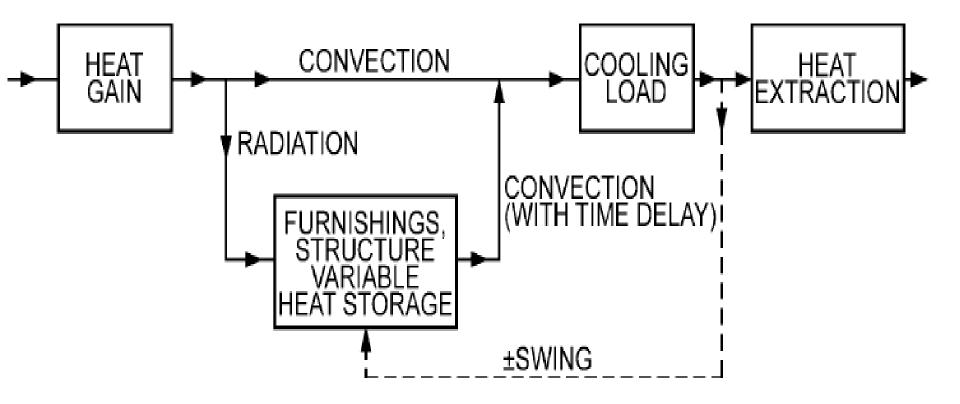
- Indoor air quality:
 - Air contaminants
 - e.g. particulates, VOC, radon, bioeffluents
 - Outdoor ventilation rate provided
 - ASHRAE Standard 62-2001
 - Air cleanliness (e.g. for processing)
- Other design parameters:
 - Sound level
 - Pressure differential between the space & surroundings (e.g. +ve to prevent infiltration)


Type of area	Recommended NC or RC range (dB)				
Hotel guest rooms	30–35				
Office					
Private	30–35				
Conference	25-30				
Open	30–35				
Computer equipment	40–45				
Hospital, private	25-30				
Churches	25-30				
Movie theaters	30–35				

Cooling Load Principles


Cooling Load Principles

- Terminology:
 - Space a volume w/o a partition, or a partitioned room, or group of rooms
 - Room an enclosed space (a single load)
 - Zone a space, or several rooms, or units of space having some sort of coincident loads or similar operating characteristics
 - Thermal zoning

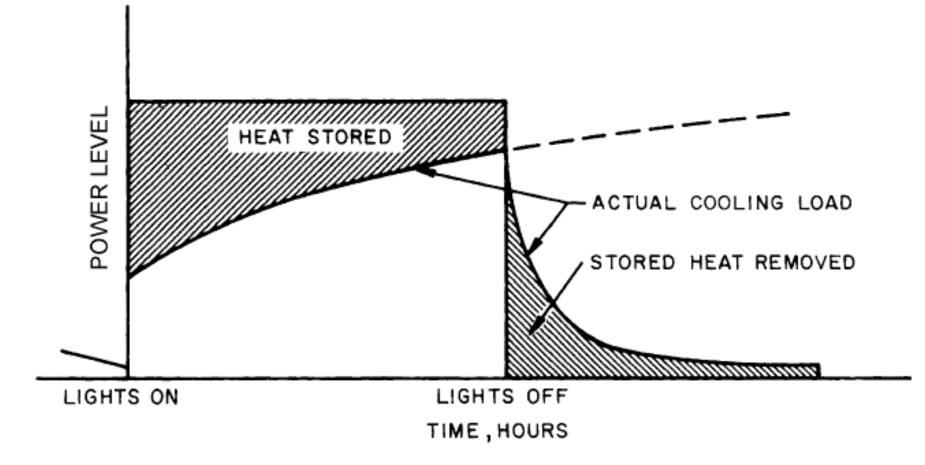

Cooling Load Principles

- Space and equipment loads
 - Space heat gain (sensible, latent, total)
 - Space cooling load / space heating load
 - Space heat extraction rate
 - Cooling coil load / heating coil load
 - Refrigeration load
- Instantaneous heat gain
 - Convective heat
 - Radiative heat (heat absorption)

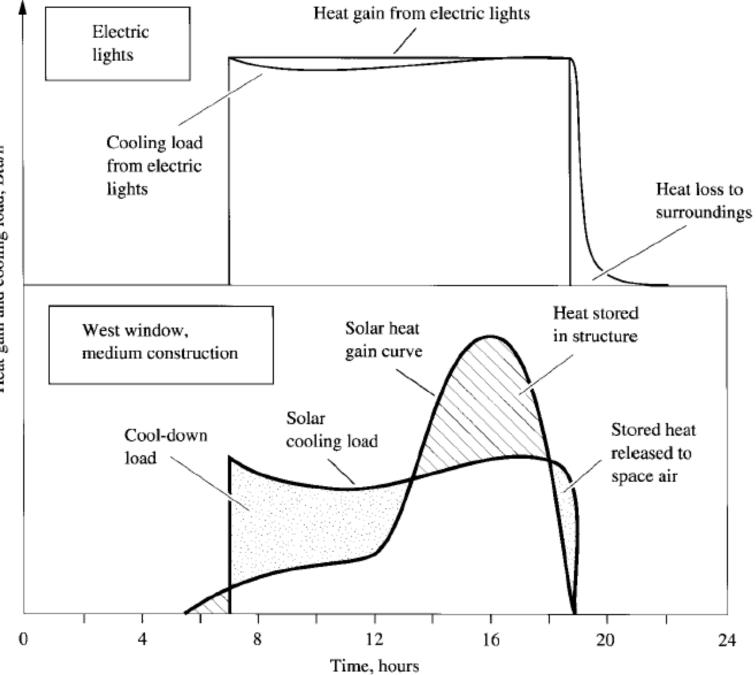


Convective and radiative heat in a conditioned space

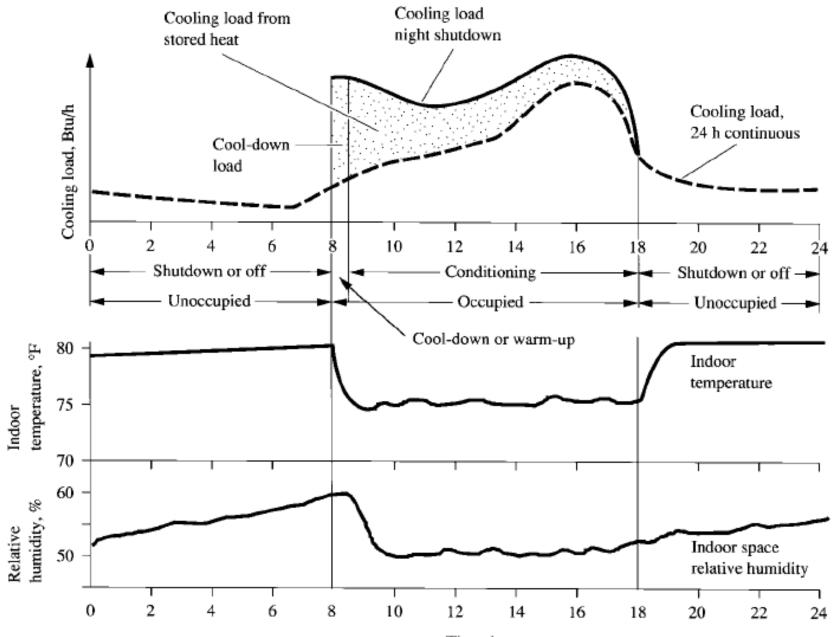
Sensible heat gains	Convective (%)	Radiative (%)		
Solar radiation with internal shading	42	58		
Fluorescent lights	50	50		
Occupants	67	33		
External wall, inner surface	40	60		

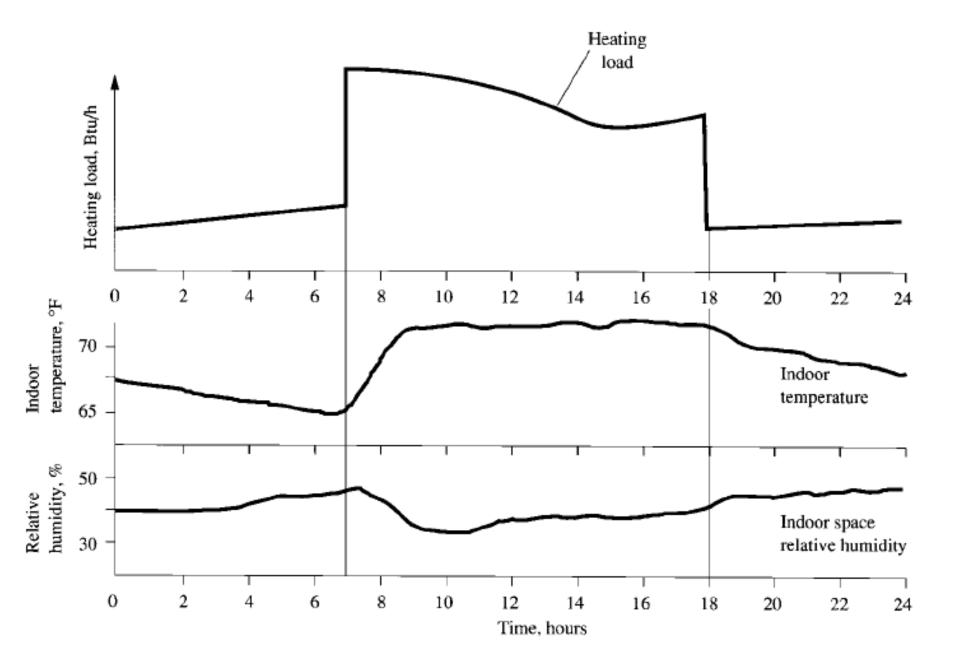


Conversion of heat gain into cooling load



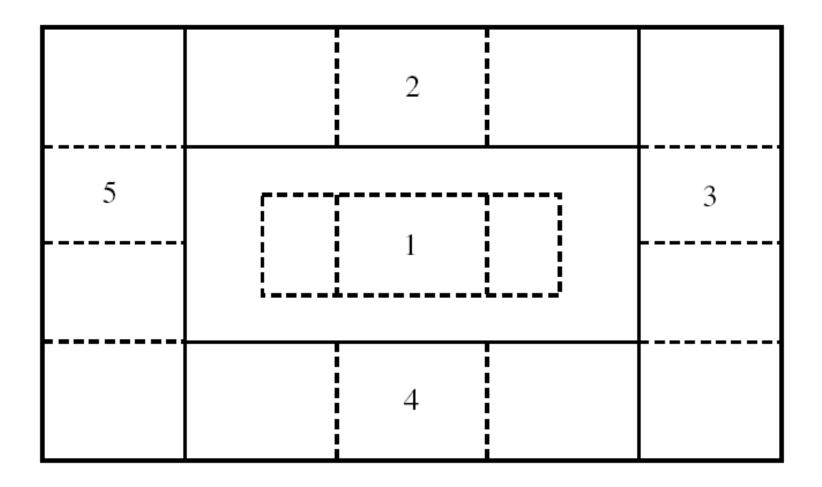
Cooling Load Principles

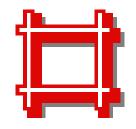

- Instantaneous heat gain vs space cooling loads
 - They are NOT the same
- Effect of heat storage
 - Night shutdown period
 - HVAC is switched off. What happens to the space?
 - Cool-down or warm-up period
 - When HVAC system begins to operate
 - Conditioning period
 - Space air temperature within the limits


Thermal Storage Effect in Cooling Load from Lights



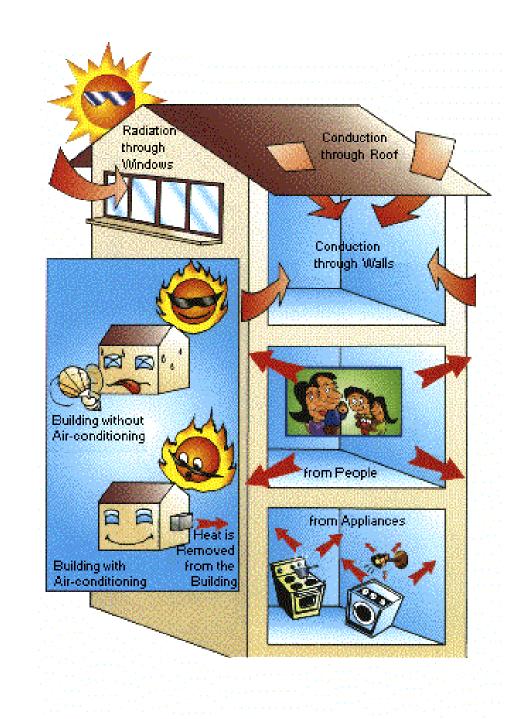
Heat gain and cooling load, Btu/h


Time, hours



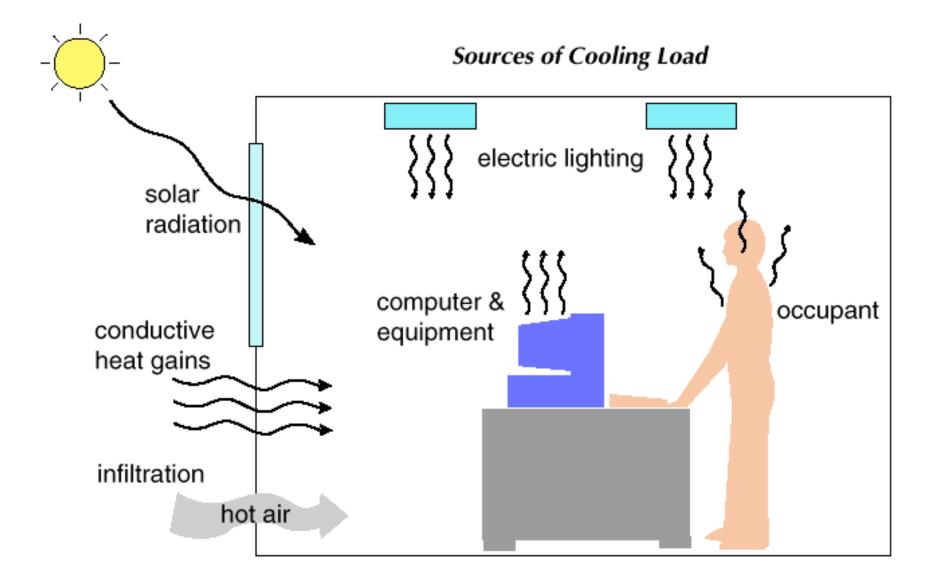
Cooling Load Principles

- Load profile
 - Shows the variation of space load
 - Such as 24-hr cycle
 - What factors will affect load profile?
 - Useful for operation & energy analysis
- Peak load and block load
 - Peak load = max. cooling load
 - Block load = sum of zone loads at a specific time



Block load and thermal zoning

Cooling Load Principles


- Moisture transfer
 - Two paths:
 - Moisture migrates in building envelope
 - Air leakage (infiltration or exfiltration)
 - If slight RH variation is acceptable, then storage effect of moisture can be ignored
 - Latent heat gain = latent cooling load (instantaneously)
- What if both temp. & RH need to be controlled?

Cooling load calculations

- To determine volume flow rate of air system
- To size the coil and HVAC&R equipment
- To provide info for energy calculations/analysis
- Two categories:
 - External loads
 - Internal loads

- External loads
 - Heat gain through exterior walls and roofs
 - Solar heat gain through fenestrations (windows)
 - Conductive heat gain through fenestrations
 - Heat gain through partitions & interior doors
 - Infiltration of outdoor air

- Internal loads
 - People
 - Electric lights
 - Equipment and appliances
- Sensible & latent cooling loads
 - Convert instantaneous heat gain into cooling load
 - Which components have only sensible loads?

		Total Heat, W		Sensible	Latent	% Sensible Heat that is	
Domos of Activity		Adult	Adjusted, M/F ^a	Heat, W	Heat, W	Radiant ^b Low V High V	
Degree of Activity		Male		**		LOW V	High V
Seated at theater	Theater, matinee	115	95	65	30		
Seated at theater, night	Theater, night	115	105	70	35	60	27
Seated, very light work	Offices, hotels, apartments	130	115	70	45		
Moderately active office work	Offices, hotels, apartments	140	130	75	55		
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38
Walking, standing	Drug store, bank	160	145	75	70		
Sedentary work	Restaurant ^c	145	160	80	80		
Light bench work	Factory	235	220	80	140		
Moderate dancing	Dance hall	265	250	90	160	49	35
Walking 4.8 km/h; light machine work	Factory	295	295	110	185		
Bowling ^d	Bowling alley	440	425	170	255		
Heavy work	Factory	440	425	170	255	54	19
Heavy machine work; lifting	Factory	470	470	185	285		
Athletics	Gymnasium	585	525	210	315		

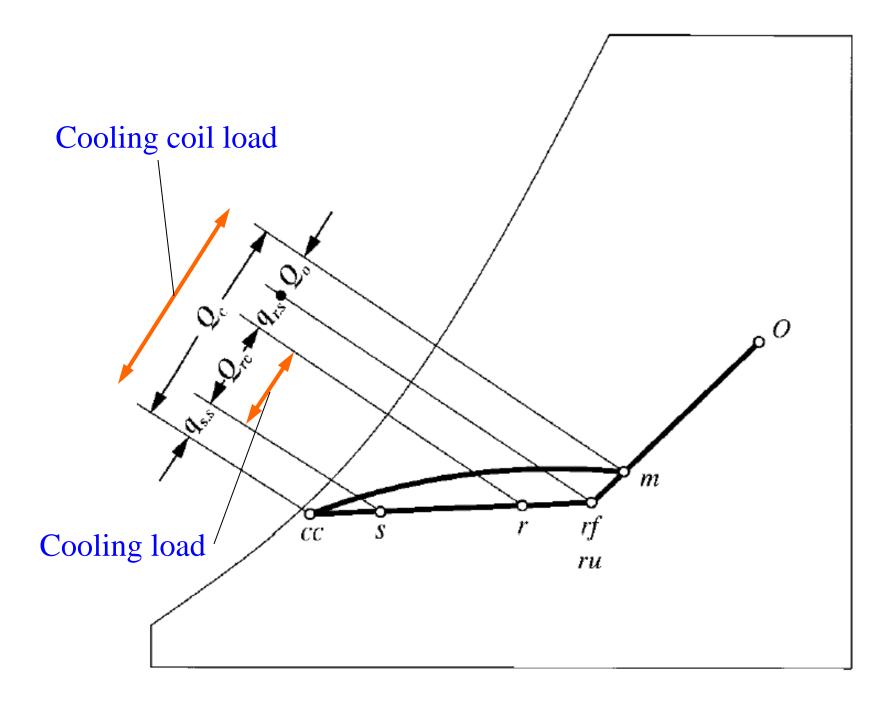
Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity

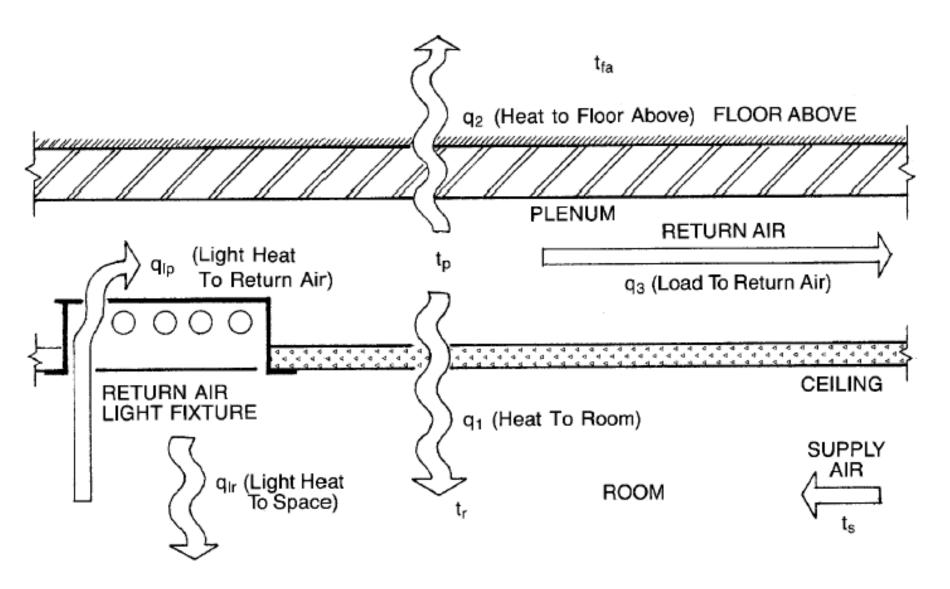
Notes:

 Tabulated values are based on 24°C room dry-bulb temperature. For 27°C room dry bulb, the total heat remains the same, but the sensible heat values should be decreased by approximately 20%, and the latent heat values increased accordingly.

Also refer to Table 4. Chapter 8, for additional rates of metabolic heat generation.
 All values are rounded to nearest 5 W.

^aAdjusted heat gain is based on normal percentage of men, women, and children for the application listed, with the postulate that the gain from an adult female is 85% of that for an adult male, and that the gain from a child is 75% of that for an adult male.


^b Values approximated from data in Table 6. Chapter 8, where is air velocity with limits shown in that table.


°Adjusted heat gain includes 18 W for food per individual (9 W sensible and 9 W latent).

^dFigure one person per alley actually bowling, and all others as sitting (117 W) or standing or walking slowly (231 W).

- Cooling coil load consists of:
 - Space cooling load (sensible & latent)
 - Supply system heat gain (fan + air duct)
 - Return system heat gain (plenum + fan + air duct)
 - Load due to outdoor ventilation rates (or ventilation load)
- How to construct a summer air conditioning cycle on a psychrometric chart?

Schematic diagram of typical return air plenum

- Space cooling load
 - To determine supply air flow rate & size of air system, ducts, terminals, diffusers
 - It is a component of cooling coil load
 - Infiltration heat gain is an instant. cooling load
- Cooling coil load
 - To determine the size of cooling coil & refrigeration system
 - Ventilation load is a coil load

Heating Load

• Design heating load

- Max. heat energy required to maintain winter indoor design temp.
 - Usually occurs before sunrise on the coldest days
 - Include transmission losses & infiltration/ventilation
- Assumptions:
 - All heating losses are instantaneous heating loads
 - Solar heat gains & internal loads usually not considered
 - Latent heat often not considered (unless w/ humidifier)

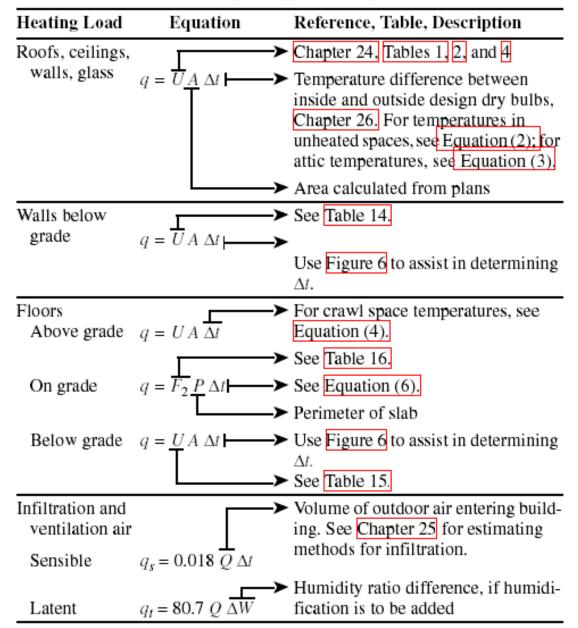


Table 12 Summary of Loads, Equations, and References for Calculating Design Heating Loads