Psychrometrics

- Gas-vapor mixtures (air-water vapor system)
- Dry air
- Water vapor
- Mixture
- Adiabatic saturation
- Psychrometric chart

Properties of dry air

- Air composition: Table9.1
- Specific volume: ideal gas law
- Specific heat : 0.997~1.022 kJ/kg K ($40 \sim 60^{\circ} \mathrm{C}$), average $1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
- Enthalpy: Ha=1.005(T-To)
- Dry bulb temperature v.s. wet bulb temperature

Properties of water vapor

- Specific volume: ideal gas law
- Specific heat: $\sim 1.88 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
- Enthalpy: Hw=2501.4+1.88(T-To)
or from steam table

Properties of air-water vapor mixtures

- Gibbs-Dalton law: $P($ total $)=P($ dry air $)+P($ water vapor $)$
- Dew-point temperature: cooled at constant pressure to reach saturation
- Humidity ratio (moisture content):W=(mass of water)/(mass of dry air)
- Relative humidity: RH\%=(mole fraction of water vapor)/(mole fraction of water vapor at saturation)=(vapor pressure of water vapor)/(vapor pressure at saturation)
- Humid heat: $\mathrm{C}=1.005+1.88 \mathrm{~W} \mathrm{~kJ} / \mathrm{kg}$ DA K - Specific volume: for each kg of dry air (DA)

Adiabatic saturation (humidification)

Wet bulb temperature

- Psychrometric wet bulb temperature: wet wick (small amount of water) + flowing air ($>1 \mathrm{~m} / \mathrm{s}, \sim 5 \mathrm{~m} / \mathrm{s}$)
- Thermodynamic wet bulb temperature: large amount of water + flowing air (reaching saturation)
- For air-water system: psychrometric wet bulb temperature is approximately equal to the thermodynamic wet bulb temperature.

Psychrometric chart

A. 5 Psychrometric Charts

Fig. A.5.1 Psychrometric chart for high temperature range.

Fig. A.5.2 Psychrometric chart for low temperature range.

- Phase rule: $\mathrm{F}=\mathrm{C}-\mathrm{P}+2$,
- $\mathrm{C}=2$ (air + water vapor), $\mathrm{P}=1$ (vapor)=> $\mathrm{F}=3$ (degree of freedom)
- $P=1$ atm. Plus another two properties

Example 9.5

- An air-vapor mixture is at $60^{\circ} \mathrm{C}$ dry bulb temperature and $35^{\circ} \mathrm{C}$ wet bulb temperature. Using the psychrometric chart to determine the relative humidity, humidity ratio, specific volume, enthalpy and dew-point temperature.

Solution

Heating (or cooling)

- Example 9.6:

Calculate the rate of thermal energy required to heat $10 \mathrm{~m}^{3} / \mathrm{s}$ of outside air at $30^{\circ} \mathrm{C}$ dry bulb temperature and 80% relative humidity to a dry bulb temperature of $80^{\circ} \mathrm{C}$.

A. 5 Psychrometric Charts

Fig. A.5.1 Psychrometric chart for high temperature range.

Solution

- $30^{\circ} \mathrm{C}, 80 \%=>\mathrm{H}=85.2 \mathrm{~kJ} / \mathrm{kg}$ DA

$$
\begin{aligned}
& \mathrm{W}=0.0215 \mathrm{~kg} \mathrm{H2O} / \mathrm{kg} \mathrm{DA}, \\
& \mathrm{~V}=0.89 \mathrm{~m} 3 / \mathrm{kg} \mathrm{DA}
\end{aligned}
$$

- $80^{\circ} \mathrm{C}, \mathrm{W}=0.0215 \mathrm{~kg} \mathrm{H} 2 \mathrm{O} / \mathrm{kg} \mathrm{DA}=>\mathrm{H}=140$ kJ/kg DA
- Mass flow rate of DA=10/0.89
- Energy requirement $=$ (mass flow rate of $D A)(\Delta H)=(10 / 0.89)(140-85.2) \mathrm{kJ} / \mathrm{s}=615.7$ kW

Mixing

- Example 9.7:

In efforts to conserve energy, a food dryer is being modified to reuse part of the exhaust air along with ambient air. The exhaust airflow of 10 $\mathrm{m}^{3} / \mathrm{s}$ at $70^{\circ} \mathrm{C}$ and 30% relative humidity is mixed with $20 \mathrm{~m}^{3} / \mathrm{s}$ of ambient air at $30^{\circ} \mathrm{C}$ and 60% relative humidity. Using the psychrometric chart to determine the dry bulb temperature and humidity ration of the mixed air.

A. 5 Psychrometric Charts

Fig. A.5. 1 Psychrometric chart for high temperature range

Drying

- Example 9.8:
- Heated air at $50^{\circ} \mathrm{C}$ and 10% relative humidity is used to dry rice in a bin dryer.
The air exits the bin under saturated conditions. Determine the amount of water removed per kg of dry air.

Solution

- Adiabatic saturation: wet bulb temperature remains constant.

A. 5 Psychrometric Charts

Fig. A.5.1 Psychrometric chart for high temperature range.

