Example: Water Resource in Central London

Getting initial solution: Norwest Corner rule

Vogel's approximation method Russel's approximation method

	1	2	3	4	5	supp	\mathbf{u}_{i}
1	16	16	13	22	17	50	
2	14	14	13	19	15	60	
3	19	19	20	23	M	50	
4(D)	M	0	M	0	0	50	
dem	30	20	70	30	60		
\mathbf{v}_{j}							

The Transportation Simplex Method

Initialization: Construct an initial BFS by one of the procedure outlined in previous lecture.

Optimality Test: Derive u_i and v_j by selecting the row having the largest number of allocations, setting its $u_i = 0$, then solving the set of equations $c_{ij} = u_i + v_j$ for each (i,j) such that x_{ij} is basic. If $c_{ij} - u_i - v_j \ge 0$ for every (i,j) such that x_{ij} is nonbasic, then the current solution is optimal.

1

- 1. Determine the entering basic variable: Select the nonbasic variable x_{ij} having the largest (in absolute terms) negative value of $c_{ij} u_i v_j$.
- 2. Determine the leaving basic variable: Identify the chain reaction required to retain feasibility when the entering basic variable is increased. Fromt eh donor cells, select the basic variable having the *smallest* value.
- 3. Determine the new BFS: Add the value of the leaving basic variable to the allocation for each recipient cell. Subtract this value from the allocation for each donor cell.

For basic x_{ij} , $c_{ij} = u_i + v_j$. Solve for u_i and v_j .

		1	2			3		4		5	supp	\mathbf{u}_{i}
1	16		16		13	40	22		17	10	50	
2	14	30	14		13	30	19		15		60	
3	19	0	19	20	20		23	30	M		50	
4(D)	M		0		M		0		0	50	50	
dem	3	30	20)	7	70	;	30	(30		
\mathbf{v}_{j}												

	1	2	3	4	5	supp	\mathbf{u}_{i}
1	16	16	13	22	17	50	
2	14	14	13	19	15	60	
3	19	19	20	23	M	50	
4(D)	M	0	M	0	0	50	
dem	30	20	70	30	60		
\mathbf{v}_{j}							

	1	2	3	4	5	supp	\mathbf{u}_{i}
1	16	16	13	22	17	50	
2	14	14	13	19	15	60	
3	19	19	20	23	M	50	
4(D)	М	0	M	0	0	50	
dem	30 20		70	30	60		
\mathbf{v}_{j}							

	1	2	3	4	5	supp	\mathbf{u}_{i}
1	16	16	13	22	17	50	
2	14	14	13	19	15	60	
3	19	19	20	23	М	50	
4(D)	М	0	M	0	0	50	
dem	30 20		70	30	60		
\mathbf{v}_{j}							