Example: Water Resource in Central London Getting initial solution: Norwest Corner rule Vogel's approximation method Russel's approximation method | | 1 | 2 | 3 | 4 | 5 | supp | \mathbf{u}_{i} | |---------------------------|----|----|----|----|----|------|---------------------------| | 1 | 16 | 16 | 13 | 22 | 17 | 50 | | | 2 | 14 | 14 | 13 | 19 | 15 | 60 | | | 3 | 19 | 19 | 20 | 23 | M | 50 | | | 4(D) | M | 0 | M | 0 | 0 | 50 | | | dem | 30 | 20 | 70 | 30 | 60 | | | | \mathbf{v}_{j} | | | | | | | | ## The Transportation Simplex Method Initialization: Construct an initial BFS by one of the procedure outlined in previous lecture. Optimality Test: Derive u_i and v_j by selecting the row having the largest number of allocations, setting its $u_i = 0$, then solving the set of equations $c_{ij} = u_i + v_j$ for each (i,j) such that x_{ij} is basic. If $c_{ij} - u_i - v_j \ge 0$ for every (i,j) such that x_{ij} is nonbasic, then the current solution is optimal. 1 - 1. Determine the entering basic variable: Select the nonbasic variable x_{ij} having the largest (in absolute terms) negative value of $c_{ij} u_i v_j$. - 2. Determine the leaving basic variable: Identify the chain reaction required to retain feasibility when the entering basic variable is increased. Fromt eh donor cells, select the basic variable having the *smallest* value. - 3. Determine the new BFS: Add the value of the leaving basic variable to the allocation for each recipient cell. Subtract this value from the allocation for each donor cell. For basic x_{ij} , $c_{ij} = u_i + v_j$. Solve for u_i and v_j . | | | 1 | 2 | | | 3 | | 4 | | 5 | supp | \mathbf{u}_{i} | |---------------------------|----|----|----|----|----|----|----|----|----|----|------|---------------------------| | 1 | 16 | | 16 | | 13 | 40 | 22 | | 17 | 10 | 50 | | | 2 | 14 | 30 | 14 | | 13 | 30 | 19 | | 15 | | 60 | | | 3 | 19 | 0 | 19 | 20 | 20 | | 23 | 30 | M | | 50 | | | 4(D) | M | | 0 | | M | | 0 | | 0 | 50 | 50 | | | dem | 3 | 30 | 20 |) | 7 | 70 | ; | 30 | (| 30 | | | | \mathbf{v}_{j} | | | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | supp | \mathbf{u}_{i} | |---------------------------|----|----|----|----|----|------|---------------------------| | 1 | 16 | 16 | 13 | 22 | 17 | 50 | | | 2 | 14 | 14 | 13 | 19 | 15 | 60 | | | 3 | 19 | 19 | 20 | 23 | M | 50 | | | 4(D) | M | 0 | M | 0 | 0 | 50 | | | dem | 30 | 20 | 70 | 30 | 60 | | | | \mathbf{v}_{j} | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | supp | \mathbf{u}_{i} | |---------------------------|-------|----|----|----|----|------|---------------------------| | 1 | 16 | 16 | 13 | 22 | 17 | 50 | | | 2 | 14 | 14 | 13 | 19 | 15 | 60 | | | 3 | 19 | 19 | 20 | 23 | M | 50 | | | 4(D) | М | 0 | M | 0 | 0 | 50 | | | dem | 30 20 | | 70 | 30 | 60 | | | | \mathbf{v}_{j} | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | supp | \mathbf{u}_{i} | |---------------------------|-------|----|----|----|----|------|---------------------------| | 1 | 16 | 16 | 13 | 22 | 17 | 50 | | | 2 | 14 | 14 | 13 | 19 | 15 | 60 | | | 3 | 19 | 19 | 20 | 23 | М | 50 | | | 4(D) | М | 0 | M | 0 | 0 | 50 | | | dem | 30 20 | | 70 | 30 | 60 | | | | \mathbf{v}_{j} | | | | | | | |