Transporiation Problem

IDirectory

\Rightarrow LP formulation of the problem
\Rightarrow The Transportation Tableau
\Rightarrow Simplex Algorithm
\Rightarrow Degeneracy
\Rightarrow Production planning application

LP Formulation of the Transportation Problem

Let i index the sources, and j the destinations $\mathrm{m}=$ \# of sources, $\mathrm{n}={ }^{\text {\# }}$ destinations
Given.
$S_{i}=$ quantity of goods available at source i
$D_{j}=$ quantity of goods required at destination j
$C_{i j}=$ unit cost of shipping goods from source i to destination j
Find:
$X_{i j}=$ quantity of goods to be shipped from source i to destination j

$$
\begin{array}{ll}
\text { Minimize } & \sum_{\mathrm{i}=1}^{\mathrm{m}} \\
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}} \\
\text { subject to } & \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{ij}} \leq \mathrm{S}_{\mathrm{i}} \text { for } \mathrm{i}=1, \ldots \mathrm{n} \\
& \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{X}_{\mathrm{ij}} \geq \mathrm{D}_{\mathrm{j}}, \mathrm{j}=1, \ldots \mathrm{n} \\
& X_{\mathrm{ij}} \geq 0, \text { all } \mathrm{i} \& \mathrm{j}
\end{array}
$$

$$
\begin{aligned}
& \text { no more is } \\
& \text { shopeditom } \\
& \text { sowce ithon } \\
& \text { is swibole }
\end{aligned}
$$

requirement

$$
\text { at } \alpha s t n i_{1}
$$

met

This is an LP with: $m \times n$ variables

$$
m+n \text { constraints }
$$

The standard, "balanced", transportation problem has total supply $=$ total demand

$$
\sum_{i=1}^{m} S_{i}=\sum_{j=1}^{n} D_{j}
$$

so that all constraints will be "tight" at a feasible solution, i.e.,

$$
\begin{aligned}
& \sum_{j=1}^{n} X_{i j}=S_{i} \text { for } i=1, \ldots m \\
& \sum_{i=1}^{m} X_{i j}=D_{j} \text { for } j=1, \ldots n
\end{aligned}
$$

Conversion to Standard Form

When total supply exceeds total demand: $\sum_{i=1}^{m} S_{i}>\sum_{i=1}^{n} D_{j}$
Create a "dummy" destination ($\mathrm{n}+1$) whose "demand" is equal to the surplus supply:

$$
D_{n+1}=\sum_{i=1}^{m} S_{i}-\sum_{j=1}^{n} D_{i}
$$

and let the cost of "shipping" to this destination be $\quad C_{i, n+1}=0$

$$
\begin{array}{|l|}
\hline\left(X_{i j}\right. \text { will equal the } \\
\text { unshipped supply at } \\
\text { source } i) \\
\hline
\end{array}
$$

Conversion to Standard Form

When total demand exceeds total supply $\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{S}_{\mathrm{i}}<\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}$
In this case, the problem is infeasible, i.e., not all demand can be satisfied.
One can create a "dummy" source ($\mathrm{m}+1$) whose available supply is the shortfall, i.e.,

$$
\mathbf{S}_{\mathrm{m}+1}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{j}}-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{S}_{\mathrm{i}}
$$

and define the cost of "shipping" to be
$C_{m+1, j}=$ unit shortage cost at destination j

Even though the transportation problem is an LP problem and is solved by the Simplex Method for LP, we do not use the usual LP tableau.

To perform the Simplex Method, we need to:
\Rightarrow obtain an initial basic feasible solution
\Leftrightarrow "price" the nonbasic variables \& select an entering variable
\Rightarrow select the basic variable which will leave the basis

How are these steps performed using the transportation tableau?

The Simplex method requires a BASIC FEASIBLE SOLUTION (bfs) to begin.
(\# of basic variables is $\mathrm{m}+\mathrm{n}-1$)
3 commonly used methods:
\Rightarrow Northwest Corner Method
\Rightarrow Least-Cost Method
\Leftrightarrow Vogel's Approximation Method

Obtaining an initial b.f.s.

"Northwest Corner Rule"

Step 1: Assign to the upper left corner of the TP tableau the minimum of the supply in that row \& the demand in that column:
$\mathrm{X}_{\mathrm{ij}}=\operatorname{minimum}\left\{\mathrm{S}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right\}$
Step 2: Reduce the supply \& demand for that row \& column by X_{ij}
Step 3: Delete any row \&/or column with zero supply or demand, and return to step 1 .

Northwest Corner Rule

atLanta L.A. DALLAS CHGO. H.Y. CAP. supply

HOME CITY	$\sqrt[5]{.95}$	1.05	. 80	. 15	1.00	0	127
	. 35	1.80	1.40	. 80	. 30	0	7
$\begin{gathered} \text { BRAHCH } \\ =2 \end{gathered}$. 90	1.80	1.60	. 70	. 85	0	15
demand:	$\begin{gathered} 5 \\ 0 \end{gathered}$	4	4	11	8		$\begin{gathered} \text { sum }= \\ 34 \end{gathered}$

Starting in the upper-left ("northwest") corner, i.e., the shipping route from HOME CITY to ATLANTA, we assign
$X=$ minimum $\{12,5\}=5$ to the route, and reduce the supply at HOME CITY, and the demand at ATLANTA each by 5

Northwest Corner Rule

ATLANTA L.A. DALLAS CHGO. N.Y. CAP. supply

Assign $X_{12}=\min \{7,4\}=4$ to the shipping route from HOME CITY to L.A.
Reduce supply for HOME CITY \& demand for L.A. by 4

Northwest Corner Rule

atlanta L.A. DALLAS CHGO. H.Y. CAP. supply

Assign $X_{13}=\min \{3,4\}=3$ to the shipping route from HOME CITY to DALLAS
Reduce supply at HOME CITY \& demand at DALLAS by 3

Northwest Corner Rule

Assign $X_{23}=\min \{7,1\}=1$ to the shipping route from BRANCH ${ }^{*} 1$ to DALLAS
Reduce supply at BRANCH * 1 \& demand at DALLAS by 1

Northwest Corner Rule

Assign $X_{24}=\min \{6,11\}=6$ to the shipping route from BRANCH $* 1$ to CHGO.
Reduce supply at BRANCH \boldsymbol{F}^{1} \& demand at CHGO. by 6

Northwest Corner Rule

Continuing, we get $X_{34}=5, X_{35}=8$, and $X_{36}=2$

Northwest Corner Rule

These 8 shipments are feasible \& basic
Total cost of this shipping plan is $\$ 27.85$

Obtaining an initial b.f.s.

"Least-Cost Rule"

Whereas the NW-corner rule ignored costs completely, this rule selects the least-cost shipping route for the next assignment. (Otherwise, similar to the NW-corner rule.)

Ignoring the EXCESS CAPACITY destination, the least-cost shipment is from HOME CITY to CHGO.
Assign min\{12, 11$\}$ to this shipping route, and reduce the supply \& demand.

Assign minimum $\{7,8\}=7$ to the shipping route from BRANCH ${ }^{*} 1$ to N.Y., and reduce the supply \& demand for this route.

Assign minimum $\{15,1\}=1$ to the shipping route from BRANCH ${ }^{*} 2$ to ${ }^{N} . Y$., and reduce supply \& demand

Assign minimum $\{1,4\}=1$ to the shipping route from HOME CITY to DALLAS, and reduce the supply \& demand.

Next, we assign minimum $\{14,5\}=5$ to the shipping route from BRANCH *2 to ATLANTA, and reduce supply \& demand.

We continue, assigning the amounts required by each of L.A., DALLAS, and "EXCESS CAP." to the shipping route from BRANCH ${ }^{\boldsymbol{*}} 2$

These 8 shipments are feasible, and a basic solution, with cost $\$ 21.90$

Obtaining an Vogel's Approximation initial b.f.s. Method (VAM)

For each row, compute a "penalty" equal to the difference between the two smallest costs in that row.
/ht we do Whiselect the least-cost cell in this row for assighing ashiphont we wilper at hast this much more per witll

Likewise, compute a "penalty" for each column, equal to the difference between the two smallest costs in that column.

Vogel's Approximation Method (VAM)

Find the maximum penalty (which may be on either a row or column), and the least-cost cell within that row or column.
As in NW-corner Method, assign as great a shipment as possible to this cell, reduce the supply \& demand for the row \& column, and repeat (recomputing the penalties)

The maximum penalty is that for L.A.
So we select the least-cost cell for L.A. (HOME CITY- L.A.)

The maximum penalty now is that of BRANCH \#2.
We select the least-cost cell in that row (BRANCH H 2 - EXCESS CAP)

After updating the penalties, we select the HOME CITY row, and the least-cost cell in that row (HOME CITY - CHGO.)

Again we update the penalties, and choose the largest penalty, that of ATLANTA, and the least-cost cell in that column (BRANCH\#1 - ATLANTA)

The maximum penalty is now that of BRANCH \#1, and we select the least-cost cell in that row (BRANCH\#1 - N.Y.)

Since only one source remains, we can complete the solution!

VAM	ATLANTA	L.A.	DALLAS	CHGO.	H.Y.	EXCES5 CAP.	supply
HOME CITY	6	4 1.05	Qa	8	LDD		12
$\underset{\sim 1}{\text { BRAHCH }}$	5	सtRED	140.	¢ \quad ¢	2	पب,	7
$\begin{gathered} \text { BRAHCH } \\ =2 \end{gathered}$		TRO	4	$\sqrt[3]{.70}$	$\begin{array}{\|c\|} \hline 6 \\ \hline .85 \\ \hline \end{array}$		15
demand:	5	4	4	11	8	2	$\begin{aligned} & \text { sum }= \\ & 34 \end{aligned}$

The total shipping cost for this solution is $\$ 21.35$

Computing Reduced Costs
 To begin a simplex iteration, we must select a variable (shipment) to enter the solution.

This variable should have a negative reduced cost.
reduced cost of a route $=\left\{\begin{array}{l}\text { change in cost function } \\ \text { if one unit is shipped } \\ \text { along that route }\end{array}\right.$

Suppose that we ship one unit from HOME CITY to ATLANTA.
Change in total cost $=+0.95-0.80+1.60-0.90$

$$
=+0.85
$$

(Berucedlont

If we ship ONE unit from BRANCH ${ }^{*} 1$ to CHGO., the required adjustments are somewhat more complex.
The reduced cost is $0.80-0.30+0.85-1.60+0.80-0.15$

$$
=+0.40
$$

In this tableau, only the (BRANCH ${ }^{2} 2$ - CHGO.) route has a negative reduced cost ($=+0.70-0.15+0.80-1.60=-0.25$) That is, every unit we ship along this route reduces our total cost by $\$ 0.25$.

An easier method for computing reduced costs:
Let $u_{i}=$ dual variable (simplex multiplier) for the supply constraint: $\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{ij}}=\mathrm{S}_{\mathrm{i}}$
$\mathrm{v}_{\mathrm{j}}=$ dual variable (simplex multiplier) for the demand constraint:

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{X}_{\mathrm{ij}}=\mathrm{D}_{\mathrm{j}}
$$

Then the reduced cost, as in the revised simplex method, is computed by: $\bar{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}}-\left(\mathrm{u}_{\mathrm{i}}+\mathrm{v}_{\mathrm{j}}\right)$

Then the reduced cost, as in the revised simplex

 method, is computed by:
reduced cost

which is much simpler than identifying the cycles!

Computing the simplex multipliers

Recall that the simplex multipliers are the values of the dual variables.

We will next write the dual constraints, and use "Complementary Slackness" to compute the dual variables.

The Primal $L P$

		品品品罗罚口	N｜r｜
$1 \begin{array}{llllll} \\ 1 & 1 & 1 & 1 & 1\end{array}$	111111	111111	$=12$ $=$ $=$ $=$ $=$
$\left\lvert\, \begin{array}{llllll}1 & & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & & 1 & \\ & & & & & \\ & & & & & 1\end{array}\right.$		$\left.\begin{array}{lllll} 1 & & & & \\ & 1 & & & \\ \\ & & 1 & & \\ \\ & & 1 & & \\ & & & & 1 \end{array}\right)$	$\begin{array}{lc}= & 5 \\ = & 4 \\ = & 4 \\ = & 11 \\ = & 3 \\ = & 2\end{array}$

The Duat LP

$\operatorname{Max} 12 \mathrm{u}_{1}+7 \mathrm{u}_{2}+\ldots+2 \mathrm{v}_{6}$ subject to

$$
\begin{gathered}
u_{1}+v_{1} \leq 0.95 \\
u_{1}+v_{2} \leq 1.05 \\
u_{1}+v_{3} \leq 0.80 \\
u_{1}+v_{4} \leq 0.15 \\
u_{1}+v_{5} \leq 1.00 \\
\vdots \\
u_{3}+v_{5} \leq 0.85 \\
u_{3}+v_{6} \leq 0 \\
\left(u_{i} \& v_{j}\right. \text { unrestricted }
\end{gathered}
$$

in sign）

The dual constraints are

$$
\mathbf{u}_{\mathrm{i}}+\mathrm{v}_{\mathrm{j}} \leq \mathrm{C}_{\mathrm{ij}} \text { for all } \mathrm{i} \& \mathrm{j}
$$

Complementary Slackness implies that

$$
\mathrm{X}_{\mathrm{ij}}>0 \Rightarrow \mathrm{u}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}=\mathrm{C}_{\mathrm{ij}}
$$

This provides us with ($m+n-1$) equations - \#of has mables
from which we can compute the ($m+n$) unk nowns.
Because the srstem of equations is "overdetermined", we can assign an arbitrary value, e.g. zero, to one of the dual variables.)

Let's arbitrarily set $u_{1}=0$
Then complementary slackness implies that

$$
\begin{gather*}
\mathrm{u}_{1}+\mathrm{v}_{3}=0.80 \tag{and}\\
\Rightarrow \mathrm{v}_{3}=0.80
\end{gather*}
$$

$$
\begin{aligned}
\mathrm{u}_{1}+\mathrm{v}_{4} & =0.15 \\
\Rightarrow \mathrm{v}_{4} & =0.15
\end{aligned}
$$

Now we can use Complementary Slackness to obtain

$$
\begin{aligned}
& u_{3}+v_{3}=1.60 \\
& u_{3}+.8=1.60 \\
& \Rightarrow u_{3}=.8
\end{aligned}
$$

Now we can use complementary slackness to obtain $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}$, and v_{6}

$$
\begin{gathered}
\mathrm{u}_{3}+\mathrm{v}_{1}=0.90 \\
\Rightarrow \mathrm{v}_{1}=0.10
\end{gathered} \quad \begin{aligned}
& \mathrm{u}_{3}+\mathrm{v}_{2}=1.80 \\
& \Rightarrow \mathrm{v}_{2}=1.00
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{u}_{3}+\mathrm{v}_{5}=0.85 \\
\Rightarrow \mathrm{v}_{5}=0.05
\end{gathered}
$$

$$
u_{3}+v_{6}=0
$$

$$
\Rightarrow \mathrm{v}_{6}=-0.8
$$

Finally, we can use v_{4} to compute u_{2} :

$$
\begin{aligned}
& \mathrm{u}_{2}+\mathrm{v}_{4}=0.30 \\
& \Rightarrow \mathrm{u}_{2}=0.25
\end{aligned}
$$

Now let's use the simplex multipliers to compute the reduced costs, using the formula: $\bar{C}_{i j}=C_{i j}-\left(u_{i}+v_{j}\right)$

$$
\begin{array}{|c|c|}
\hline \overline{\mathrm{C}}_{11}=0.95-(0+.1) \\
=0.85
\end{array} \begin{gathered}
\overline{\mathrm{C}}_{24}=0.80-(0.25+0.15) \\
=0.40
\end{gathered} \begin{gathered}
\overline{\mathrm{C}}_{34}=0.70-(0.8+0.15) \\
=-0.25
\end{gathered}
$$

These are in agreement
with the earlier computations!

Selecting variable to leave the bas is

Once we have selected the variable to enter the bas is, we must select the variable to leave the basis.
(/f the simplex method, this is usually decided by the "H/NIIH/Y RATHO TEST")

Since each unit shipped along the BRANCH ${ }^{2}-\mathrm{CHGO}$. route reduces our cost by $\$ 0.25$, so we wish to ship as much as possible.

What is the upper limit on θ ?
As soon as $\theta=3$, the shipment from BRANCH ${ }^{2}$-DALLAS becomes zero, preventing any further increase in θ

The new solution has a total shipping cost of $\$ 21.15$, a savings of $\$ 0.75(=3 \times 0.25)$

To proceed with the next iteration, we first compute the dual variables.
For example, start with $u_{1}=0$

$$
\begin{aligned}
& \text { For example, start with } u_{1}=0: \\
& u_{1}=0 \Rightarrow\left\{\begin{array}{l}
v_{3}=0.8 \\
v_{4}=0.15
\end{array} u_{3}=0.55 \Rightarrow\left\{\begin{array}{l}
v_{1}=0.35 \\
v_{2}=1.25 \\
v_{5}=0.3 \\
v_{6}=-0.55
\end{array} \Rightarrow u_{2}=0\right.\right.
\end{aligned}
$$

The reduced costs may now be computed:

$$
\begin{aligned}
\overline{\mathrm{C}}_{11} & =0.95-(0+0.35) \\
& =+0.60 \\
\overline{\mathrm{C}}_{12} & =1.05-(0+1.25) \\
& =-0.20 \\
& \text { etc. }
\end{aligned}
$$

We identify the cycle formed by adding the new shipment, and determine the adjustments required. The maximum allowed increase in θ is $\min (8,4)=4$

The new basic solution, with the cost reduced by $\mathrm{X}_{12} \times \overline{\mathrm{C}}_{12}=4 \times 0.20=0.80$

By first assigning $u_{3}=0$, the dual variables shown above are computed.

The reduced costs of the nonbasic variables are:

i	1	1	1	2	2	2	2	2	3	3
j	1	5	6	1	2	3	4	6	2	3
$\overline{\mathrm{C}}_{\mathrm{ij}}$	+0.6	+0.7	+0.55	0	+0.75	+0.6	+0.65	+0.55	+0.2	+0.25

Since the reduced costs are nonnegative, the above solution is optimall

Increasing X_{21} by θ results in no change in the total cost, since the reduced cost is zero. Any increase up to 5 will be feasible, and therefore optimal!

For example, an increase of 3 is optimal (although this gives us 9 positive shipments, which exceeds the number of basic variables, and is therefore optimal but not basic!)

If $\theta=5$, then X_{31} becomes zero and can leave the basis, giving the basic optimal solution shown above.

A Complication: Degeneracy

A degenerate feasible solution is one in which a basic variable is zero.

When this occurs. the next basis change

Example:
 may not result in an improvement in the total cost!

As $\boldsymbol{\theta}$ is increased, two of the basic variables reach zero simultaneously!

Only one basic variable can be replaced by X_{31}, while the other remains in the basis, even though it's value is zero.

New bfs is degenerate

A IProduction IPlanning Droblem

- demands for next 4 weeks (which must be satisfied) are: $300,700,900$, and 800
- regular production capacity is 700/week
- overtime is available in the SECOND \& THIRD weeks, adding 200 to the production capacity
- production costs are $\$ 10 /$ unit during weeks \# $1 \& 2$, increasing to $\$ 15 /$ unit during weeks \#3\&4; overtime adds $\$ 5 /$ unit to the cost.
- excess production may be stored at a cost of $\$ 3 /$ unit per week.

How should production be scheduled to minimize costs?

A TRANSPORTATION model of production planning:
For each week, represent each of regular and overtime capacities as a source:

Likewise, for each week represent each demand as a destination.

Units which are produced in week $\geqslant 1$ and which satisfy demand in week ${ }^{*} 1$ are modeled as a flow from the source node to the destination node:

Units which are produced in week $\geqslant 1$ and which are used to satisfy the demand in week $\geqslant 2$ are modeled by a flow from the week $\geqslant 1$ source to the week $\geqslant 2$ destination:

Flows in this model do not represent changes in geographical location!

Wote that Hows boole are nerer bockworlim time.

H/hat meaning could s shipment backward in time have?
Suppose we produce a unit in week 2 with which to satisty meek /'s demand'

That is. week / demand has been "backordered" The cost of such a "shipment" should inchude bsckorder costs

