Combined Loadings & Thin-Walled vessels

This chapter serves as a review of the stress-analysis that has been
developed in the previous chapters regarding axial load, torsion,
bending and shear. The solution to problems where several of these

loads occur simultaneously will be studied. Prior to this, the stresses in
thin-walled vessels will be analyzed.

What is a thin walled pressure vessel?
Cylindrical or spherical vessel that has a radius to wall
thickness ratio of 10 or more.

r/t>10

It may be assumed for the sake of simplifying the analysis of stresses
in the wall of these vessels that the stress distribution throughout its
thickness remains uniform or constant. — -‘

Also assumed is that the pressure referred
to is the gauge pressure (above
atmospheric pressure) and not the
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O Normal Stress in the hoop direction ==

Longitudinal or axial direction -
2
Both exert tension on the material
To compute the values of each use
equilibrium of a section of the
Jtank

Thin-Walled Vessels
Cylindrical
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In the above equations,

o, 03 = the normal stress in the hoop and longitudinal directio
respectively. Each is assumed to be constant throughout the
wall of the cylinder, and each subjects the material to tension

p = the internal gauge pressure developed by the contained gas o
fluid

r = the inner radius of the cylinder

t = the thickness of the wall (r/r = 10)



Thin-Walled Vessels
Spherical

Likewise using equilibrium we can
analyse spherical vessels using
equilibrium as shown:

as(2mrt) — p(mr?) =0
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The result is the same as longitudinal =
stress of cylinders (the lesser of the two). W
This is true no matter what orientation _
you are considering (when the weight of
the contents is neglected as is usually the y e
case). 2

Radial Stress

Another stress component in thin walled vessels is radial stres%

Radial stress acts along a radial line (outwards) and varies in magnltude
from pressure ‘p’ at the interior surface to zero on the outer surface of the
vessel wall — it is neglected due to its relatively small value comg‘}rgczl to

L1




Thin-Walled vessels- Problem Solving Space shuttle fuel tank in
the woods after crash

8-1. A spherical gas tank has an inner radiusof r = 1.5 m.
If 1t 1s subjected to an internal pressure of p = 300 kPa,
determine its required thickness if the maximum normal
stress 1s not to exceed 12 MPa.

pr 300(10°)(1.5) t— _
allow — 2—t 12(106) _ ( Zt)( ) t=0.0188m=18.8mm

8-2. A pressurized spherical tank is to be made of 0.5-
in.-thick steel. If it is subjected to an internal pressure of
p = 200 psi, determine its outer radius if the maximum
normal stress is not to exceed 15 ksi.

. =75In
_Pr oy 300(r)
Callow = 2—,[ 15(10°) = 2(0.5) r,=75in+0.5in=75.5in

o)

8-3. The tank of a cylindrical air compressor is subjected
to an internal pressure of 90 psi. If the internal diameter
of the tank is 22 in., and the wall thickness is 0.25 in..
determine the stress components acting at a point. Draw
a volume element of the material at this point, and show
the results on the element.

pr _ 90(11)

“77¢ T 005
_pr_ 90(11)

°2 7 ot T 2(0.25)

= 3960 psi = 3.96 ksi

=1980 psi =1.98 ksi



Thin-Walled vessels- Problem Solving

8-6. The open-ended polyvinyl chloride pipe has an — pr = 60(2) =600 psi
inner diameter of 4 in. and thickness of 0.2 in. If it carries ! t 0.2
flowing water at 60 psi pressure, determine the state of
stress in the walls of the pipe.
r O,
Py — Gl* N f o,=0  (OpenEnds)
t [ |
8-7. If the flow of water within the pipe in Prob. 8-6 is
stopped due to the closing of a valve, determine the state
of stress in the walls of the pipe. Neglect the weight of
the water. Assume the supports only exert vertical forces
on the pipe.
r  60(2 : r O,
1:IO = ():600p5| Oiv — >
ik —Inl
r 60(2 :
_Pr_80@2) _ 509 psi

o, =
2t~ 2(0.2)



Thin-Walled vessels- Problem Solving

B-11.  The staves or vertical members of the wooden tank
are held together using semicircular hoops having a thick-
ness of (1.5 in. and a width of 2 in. Determine the normal
stress in hoop AB if the tank issubjected to an internal gauge
pressure of 2 pst and this loading 1s transmitied direcily to
the hoops. Also, if 0.25-in.-diameter bolts are used to con-
nect each hoop together, determing the tensile stress in each
bolt at A and B. Assume hoop AB supports the pressure
loading within a 12-1n. length of the tank as shown.
- 181n.
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F. =2(36)(12) =864 Ib

> F =0; 864-2F=0; F=4321Ib

Stress in the metal hoop:
F 432 : F

Stress in the bolts:

432

=— = =432 psi Oy =
T A T 05(2) P "TA

" 714(0.25)

=8801 psi



Combined Loadings

We have learned to determine the stress distribution in a structural
element or member subjected to either:

Axial Force
)

Bending Force l

Q 1) K o=t e

Uniform Normal

)4— o :E stress due to
normal == A axial load

Shear Moment

VQ Shear stress _
. — due to Bending
Torsional Moments. O . 4

% Y B = Tp Shear stress

J due to torque



Combined Loadings

Unfortunately for the students of 4312, it is rare that a
structural member is subject to only one of these
loading conditions, usually a member is subject to
several loadings simultaneously.

The method of Superposition can be used most often to
determine the resultant stress distribution caused by
the loads; ie. determine the stress distribution due to
each loading then superimpose them to get the
resultant. Loads and stresses must be linearly related
and members cannot undergo significant geometric
change due to loading in order for superposition to

PROCEDURE FOR ANALYSIS

The following procedure provides a general means for establishing
the normal and shear stress components at a point in a member when
the member is subjected to several different types of loadings

simultaneously. It is assumed that the material is homogenzous and
behaves in a hnear-elastic manner. Also, Saint-Venant's principle
requires that the point where the stress is to be determined is far
removed from any discontinuities in the cross section or points of
applied load.




Combined Loadings Procedure for Analysis

Step 1
Internal Loading.

* Section the member perpendicular to its axis at the point where
the stress is to be determined and obiain the resultant internal
normal and shear force components and the bending and torsional
moment components.

* The force components should act through the centroid of the cross
section, and the moment components should be computed about
centroidal axes, which represent the principal axes of inertia for
the cross section.

Step 2

Average Normal Stress.

* Compute the stress component associated with cach internal
loading. For each case, represent the effect either as a distribution
of stress acting over the entire cross-sectional area, or show the
stress on an element of the material located at a specified point
on the cross section.



Combined Loadings Procedure for Analysis

Step 3
Normal Force.

The internal normal force is developed by a uniform normal-stress
distribution determined from o = P/ A.

Step 4

Shear Force.

The internal shear force in a member that 1s subjected to bending 1s
developed by a shear-stress distribution determined from the shear
formula, 7 = VQ/It. Special care, however, must be exercised when
applying this equation, as noted in Sec. 7.3.

Step 5

Bending Moment.

For straight niembers the internal bending moment 1s developed by a
normal-stress distribution that varies linearly from zero at the neutral
axis to a maximum at the outer boundary of the member. The stress
distribution is determined from the flexure formula. o = —My/[. If
the member is curved, the stress distribution is nonlinear and is
determined from o = Mv/[Ae(R — v)].



Combined Loadings Procedure for Analysis

Step 6

Torsional Moment.

For circular shafts and tubes the internal torsional moment is developed
by a shear-stress distribution that varies linearly from the central axis
of the shaft to a maximum at the shaft’s outer boundary. The shear-
stress distribution is determined from the torsional formula, 7 = Tp/J.
If the member is a closed thin-walled tube,use 7 = T/2A,,1.

Step 7

Thin-Walled Pressure Vessels.

If the vessel is a thin-walled cylinder. the internal pressure p will
cause a biaxial state of stress in the material such that the hoop or
circumferential stress component is o = pr/t and the longitudinal
stress component is o> = pr/2t. If the vessel is a thin-walled sphere,
then the biaxial state of stress i1s represented by two equivalent

components, each having a magnitude of o> = pr/21.



Combined Loadings Procedure for Analysis

Step 8

Superposition.

* Once the normal and shear stress components for each loading have
been calculated, use the principle of superposition and determine the
resultant normal and shear stress components.

e Represent the results on an element of material located at the point,

or show the results as a distribution of stress acting over the member’s
cross-sectional area.




Combined Loadings
Example

A force of 150 Ib s applied to the edge of the member shown in Fig. 8-3a.
Neglect the weight of the member and determine the state of stress at
points B and C.

150 1b




Combined

Loadings
Example

Solution

Internal Loadings. The member is sectioned through B and C. For equi-
librium at the section there must be an axial force of 150 1b acting through
the centroid and a bending moment of 750 Ib - in. about the centroidal or

principal axis, Fig. 8-3b.

Stress Components.

Normal Force. The uniform normal-stress distribution due to the normal
force is shown in Fig. 8-3c. Here

P 150 1b
o =—=
A (10in.)(4in.)
Bending Moment. The normal-stress distribution due to the bending
moment is shown in Fig. 8-3d. The maximum stress is
750 1b+in.(5 in.
= S o5 o
[5(4in.)(10in.)?]

150 Ib 150 Ib

= 3.75 psi

T max

s |

750 1b-in,

150 1b



Combined Loadings
Example

Superposition. 1 the above normal-stress distributions are added alge-
braically, the resultant stress distribution is shown in Fig, 8-3¢. Although
it is not needed here, the location of the line of zero stress can be deter-
mined by proportional triangles; i.e.,
7.5 psi 15 psi
X (10in. — x)
x = 333 m.
Elements of material at B and C are subjected only to normal or uniaxial
stress as shown in Fig. 8-3f and 8-3g. Hence,

og = 7.3pst (tension) Ans.

Te- = 15pst  (compression ) Ans.
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