Spherical pressure vessels

- Pressure vessels are closed structures containing liquids or gases under pressure
- Examples include tanks, pipes, beverage containers and pressurized cabins in aircraft and space vehicles
- If pressure vessels have walls that are thin in comparison to their overall dimensions they are known as *shell structures*
- In this section we consider <u>thin walled (**r/t>10)**</u> pressure vessels of spherical shape

Spherical pressure vessel

Spherical pressure vessels

Formula for calculating the tensile
 stresses in the wall of a spherical shell

$$\sigma = \frac{pr}{2t}$$

- The wall of a pressurized spherical vessel is subjected to uniform tensile stresses σ in all directions (because of spherical symmetry)
- Stresses that act tangentially to the curved surface of a shell are known as *membrane stresses*. The name arises from the fact that these are the only stresses that exist in true membranes, such as thin polymer films, soap films etc

Tensile stresses σ in the wall of a spherical pressure vessel

Stresses at the outer surface

FIG. 8-4 Stresses in a spherical pressure vessel at (a) the outer surface and (b) the inner surface

- Element in fig 8-4(a) is in biaxial stress. No in-plane shear stresses acting on the thin element
- Every plane is a principal plane and every direction is a principal direction

$$\sigma_1 = \sigma_2 = \frac{pr}{2t}, \sigma_3 = 0$$

$$\tau_{\text{max}} = \frac{\sigma}{2} = \frac{pr}{4t}$$

Out of plane maximum shear stresses

General comments

- The wall thickness must be small in comparison to the outer dimensions.
 Ratio r/t should be greater than 10
- 2. The internal pressure must exceed the external pressure in order to avoid inward buckling
- 3. We consider the effects of internal pressure only. The effects of external loads, reactions, the weight of the contents and the weight of the structure are not considered
- 4. The formulas derived in this section are valid throughout the wall of the vessel *except near points of stress concentration*

Cylindrical pressure vessels

- Cylindrical pressure vessels with a circular cross-section are found in industrial settings (compressed air tanks, rocket motors), in homes (fire extinguishers, spray cans) and in the countryside (propane tanks, grain silos)
- Pressurized pipes are also classified as cylindrical pressure vessels

Circumferential and longitudinal stress

- The stress σ_1 is called the *circumferential stress* or the *hoop stress*
- The stress σ_2 is called the *longitudinal stress* or the *axial stress*

$$\sigma_1 = \frac{pr}{t}$$

$$\sigma_2 = \frac{pr}{2t}$$

 $P_2 = p \pi r^2$ (c)

FIG. 8-7
Stresses in a circular cylindrical pressure vessel

Stresses at the outer surface

- The principal stresses σ_1 and σ_2 at the outer surface of the cylindrical vessel are shown on the stress element in fig 8-8(a) where σ_3 = 0 (i.e. biaxial stress state)
- The maximum out of plane shear stresses is;

$$\tau_{max} = \frac{\sigma_1}{2} = \frac{pr}{2t}$$

FIG. 8-8 Stresses in a circular cylindrical pressure vessel at (a) the outer surface and (b) the inner surface

