SOLAR COLLECTOR S

Stationary collectors

Flat-plate collector No concentration

Flat Plate collector

The Flat Plate Collector is basically a heat exchanger which transfers the radiant energy of the incident sunlight to the sensible heat of a working fluidliquid or air.

Flat-plate collector

Flat-plate collector

Schematic diagram of an evacuated tube collector

Evacuated tube collectors

Stationary collectors

Concentrating

Flat plate collector with flat reflectors

Schematic diagram of a CPC collector

Schematic of central receiver system

Parabolic trough collectors

Useful energy collected from a collector

General formula:

$$q_u = A_c \left[G_t \tau \alpha - U_L \left(T_p - T_a \right) \right] = mc_p \left[T_o - T_i \right]$$

by substituting inlet fluid temperature (Ti) for the average plate temperature (Tp): $q_u = A_c F_R \left[G_t(\tau \alpha) - U_L \left(T_i - T_a\right) \right]$

Where F_R is the heat removal factor

Collector efficiency

Finally, the collector efficiency can be obtained by dividing q_u by ($G_t A_c$). Therefore:

$$n = F_R \left[\tau \alpha - \frac{U_L (T_i - T_a)}{G_t} \right]$$

Overall heat loss coefficient

- The overall heat loss coefficient is a complicated function of the collector construction and its operating conditions and it is given by the following expression:
- $P U_L = U_t + U_b + U_e$ (for flat plate collector)
- i.e., it is the heat transfer resistance from the absorber plate to the ambient air.

Laboratory model

Application on inclined roof

Multi-residential application

Swimming pool heating

Heliostat detail

