Suppose that $-\mathrm{Z}, \mathrm{X}_{4}, \mathrm{X}_{5}, \& \mathrm{X}_{6}$ are basic in the current tableau：
pIVOT

$$
\begin{array}{|rrrrrrrr}
\hline-\mathrm{Z} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \mathrm{X}_{6} & \text { RHS } \\
1 & 2 & 10 & 3 & 0 & 0 & 0 & 0 \\
0 & 9 & 8 & 7 & 1 & 0 & 0 & 12 \\
0 & 5 & 7 & 4 & 0 & 1 & 0 & 5 \\
0 & 10 & 4 & 3 & 0 & 0 & 1 & 8 \\
\hline
\end{array}
$$

If we pivot on＂ 10 ＂in row 4 ，column 2，the result is

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS
1	0	9.2	2.4	0	0	-0.2	-1.6
0	0	4.4	4.3	1	0	0.9	4.8
0	0	5	2.5	0	1	0.5	1
0	1	0.4	0.3	0	0	0.1	0.8

As a result of this pivot，X_{6}（which was previously basic in row 4）has become nonbasic，replaced by X_{1} ．

囚⿴囗囚囚囚囚囚囚囚囚囚囚

This pivot operation consisted of 4 elementary row operations:

1. Multiply row $\# 4$ by 0.1 to replace the pivot element by 1 :

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS
1	2	10	3	0	0	0	0
0	9	8	7	1	0	0	12
0	5	7	4	0	1	0	5
0	1	0.4	0.3	0	0	0.1	0.8

2. Subtract 5 times row 4 from row 3:

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS
1	2	10	3	0	0	0	0
0	9	8	7	1	0	0	12
0	0	5	2.5	0	1	0.5	1
0	1	0.4	0.3	0	0	0.1	0.8

3. Subtract 9 times row 4 from row 2 :

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS
1	2	10	3	0	0	0	0
0	0	4.4	4.3	1	0	0.9	4.8
0	0	5	2.5	0	1	0.5	1
0	1	0.4	0.3	0	0	0.1	0.8

4. Subtract 2 times row 4 from row 1 :

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS
1	0	9.2	2.4	0	0	-0.2	-1.6
0	0	4.4	4.3	1	0	0.9	4.8
0	0	5	2.5	0	1	0.5	1
0	1	0.4	0.3	0	0	0.1	0.8

After the first row operation, the sequence of the other three is arbitrary!

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6} RHS	
1	2	10	3	0	0	0	0
0	9	8	7	1	0	0	12
0	5	7	4	0	1	0	5
0	10	4	3	0	0	1	8

Other sequences of elementary row operations can result in 1 in the pivot location and zero elsewhere in the column-they are NOT pivot operations!

Suppose we subtract 0.4 times row 3 from row 1:

-Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	RHS^{2}
1	0	7.2	1.4	0	0.4	0	2
0	9	8	7	1	0	0	12
0	5	7	4	0	1	0	5
0	1	0.4	0.3	0	0	0.1	0.8

This gives us the desired " 0 " in row 1 of the X_{1} column... but notice what has happened to the column for X_{5} !

