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U-5,Two Degree of Freedom Vibration 
System

* The vibrating systems, which require two coordinates to describe its motion, 
ll d t d f f d tare called two-degrees-of -freedom systems. 

* These coordinates are called generalized coordinates when they are 
independent of each other and equal in number to the degrees of freedom of 
the system. y
* Unlike single degree of freedom system, where only one co-ordinate and 
hence one equation of motion is required to express the vibration of the 
system, in two-dof systems minimum two co-ordinates and hence two 
equations of motion are required to represent the motion of the system For aequations of motion are required to represent the motion of the system. For a 
conservative natural system, these equations can be written by using mass 
and stiffness matrices.
* One may find a number of generalized co-ordinate systems to represent the 
motion of the same system While using these co ordinates the mass andmotion of the same system. While using these co-ordinates the mass and 
stiffness matrices may be coupled or uncoupled. When the mass matrix is 
coupled, the system is said to be dynamically coupled and when the stiffness 
matrix is coupled, the system is known to be statically coupled. 



Two Degree of Freedom Vibration System

* The set of co-ordinates for which both the mass and stiffness matrix are 
uncoupled, are known as principal co-ordinates. In this case both the system 
equations are independent and individually they can be solved as that of a 
single-dof system. 
* A two-dof system differs from the single dof system in that it has two natural 
frequencies, and for each of the natural frequencies there corresponds a 
natural state of vibration with a displacement configuration known as the 
normal mode. Mathematical terms associated with these quantities arenormal mode. Mathematical terms associated with these quantities are 
eigenvalues and eigenvectors. 
* Normal mode vibrations are free vibrations that depend only on the mass 
and stiffness of the system and how they are distributed. A normal mode 
oscillation is defined as one in which each mass of the system undergoesoscillation is defined as one in which each mass of the system undergoes 
harmonic motion of same frequency and passes the equilibrium position 
simultaneously. 
* The study of two-dof- systems is important because one may extend the 

fsame concepts used in these cases to more than 2-dof- systems. Also in 
these cases one can easily obtain an analytical or closed-form solutions. But 
for more degrees of freedom systems numerical analysis using computer is 
required to find natural frequencies (eigenvalues) and mode shapes 
( i )(eigenvectors).



Two Degree of Freedom Vibration System
Figure 6.1.1 shows two masses m1 and m2 with three springs having 
spring stiffness k1, k2 and k3 free to move on the horizontal surface. 
Let x1 and x2 be the displacement of mass respectively. 

Figure 6.1.1(a)g ( )

Figure 6.1.1(a) 



Two Degree of Freedom Vibration System
by using d'Alembert principle or the energy principle (Lagrange principle or 
H ilt ' i i l )Hamilton 's principle) 

Figure 6.1.1(b): Free body diagrams
Using d'Alembert principle for mass m1 from the free body diagram shown in 
figure 6.1.1(b) 

(6.1.1)
and similarly for mass m2 

(6.1.2)



Two Degree of Freedom Vibration System
Important points to remember
Inertia force acts opposite to the direction of acceleration, so in both the free 
body diagrams inertia forces are shown towards left. 

For spring m2 assuming x1> x2 , The spring will pull mass m2 towards right 
b k2 ( 2 1) d it i t t h d b 2 1 (t d i ht) it ill t fby k2 (x2- x1) and it is stretched by x2- x1 (towards right) it will exert a force 
of k2 (x2- x1) towards left on mass m2 .
Similarly assuming x1> x2 the spring get compressed by an amount x2- x1 
and exert tensile force of k2 (x2- x1). One may note that in both cases, free 
bod diagram remain nchangedbody diagram remain unchanged. 

Now if one uses Lagrange principle, 

The Kinetic energy =  (6.1.3)

Potential energy =  (6.1.4)



Two Degree of Freedom Vibration SystemTwo Degree of Freedom Vibration System

So, the Lagrangian
(6.1.5)

The equation of motion for this free vibration case can be found from q
the Lagrange principle

(6.1.6)

and noting that the generalized co-ordinate             and   
which yields

(6 1 7)(6.1.7)

(6 1 8)(6.1.8)



Two Degree of Freedom Vibration System
Same as obtained before using d'Alembert principle.

Now writing the equation of motion in matrix form 

(6.1.9)

Here it may be noted that for the present two degree-of-freedom 
system, the system is dynamically uncoupled but statically coupled. 



Two Degree of Freedom Vibration System
Consider a lathe machine, which can be modeled as a rigid bar with 
its center of mass not coinciding with its geometric center and 
supported by two springs,  

Figure 6.1.2 Figure 6.1.3: Free body diagram of the systemg g y g y

In this example, it will be shown, how the use of different coordinate 
systems lead to static and or dynamic coupled or uncoupled 
equations of motion. 



Two Degree of Freedom Vibration System
Clearly this is a two-degree-of freedom system and one may express the co-

di t t i diff t Fi 6 1 3 h th f b dordinate system in many different ways. Figure 6.1.3 shows the free body 
diagram of the system where point G is the center of mass. Point C 
represents a point on the bar at which we want to define the co-ordinates of 
this system. This point is at a distance   from the left end and   from right end. 
Di t b t i t C d G i A i i th li di l tDistance between points C and G is e. Assuming   is the linear displacement 
of point C and   the rotation about point C, the equation of motion of this 
system can be obtained by using d'Alember's principle. Now summation of all 
the forces, viz. the spring forces and the inertia forces must be equal to zero 
l d t th f ll i tileads to the following equation. 

(6.1.10)

Again taking moment of all the forces about point CAgain taking moment of all the forces about point C

(6.1.11)



Two Degree of Freedom Vibration System

Noting                           , the above two equations in matrix form can 
be written as 

(6.1.12) 

N d di th iti f i t C f b t di dNow depending on the position of point C, few cases can be studied 
below.
Case 1 : Considering             , i.e., point C and G coincides, the 
equation of motion can be written asequation of motion can be written as 

Figure 6.1.4



Two Degree of Freedom Vibration System
Derivation of Equation of Motion and Coordinate 
Coupling 

(6.1.13)
So in this case the system is statically coupled and if                 , this 
coupling disappears, and we obtained uncoupled x and   vibrations.
Case 2 : If,                     , the equation of motion becomes

(6.1.14)

Hence in this case the system is dynamically coupled but statically 
uncoupled.



Two Degree of Freedom Vibration System

Case 3: If we choose                   , i.e. point C coincide with the left end,, p ,

the equation of motion will become 

(6.1.15)

Here the system is both statically and dynamically coupled.



Two Degree of Freedom Vibration System

Normal Mode Vibration
Again considering the problem of the spring-mass system inAgain considering the problem of the spring mass system in 
figure 6.1.1 with                  ,                    ,                                 , the 
equation of motion (6.1.9) can be written as          

(6.1.16)
We define a normal mode oscillation as one in which each mass 
undergoes harmonic motion of the same frequency passingundergoes harmonic motion of the same frequency, passing 
simultaneously through the equilibrium position. For such motion, we 
let

(6.1.17)( )
Hence, 

(6 1 18)(6.1.18)



Two Degree of Freedom Vibration System
or, in matrix form 

(6.1.19)

Hence for nonzero values of        and             (i.e., for non-trivial response)

(6.1.20)
Now substituting                  , equation 6.1. yields

(6.1.21)

H dHence, and 



Two Degree of Freedom Vibration System

So, the natural frequecies of the system are                                         and 

Now from equation 6.1., it may be observed that for these frequencies, as 
both the equations are not independent, one can not get unique value of   and  
. So one should find a normalized value. One may normalize the response by y p y
finding the ratio of   to  . From the first equation 6.1. the normalized value can 
be given by 

(6 1 22)(6.1.22)

and from the second equation of 6.1., the normalized value can be given by 

(6.1.23)



Two Degree of Freedom Vibration Systemg y

Now, substituting                                                                              in 
equation 6.1.22 and 6.1.23 yields the same values, as both these 

ti li l d d t Hequations are linearly dependent. Here, 

(6.1.24)

and similarly for   

(6.1.25)(6.1.25)



Two Degree of Freedom Vibration System

It may be noted 
Equation (6.1.19) gives only the ratio of the amplitudes and not their 
absolute values which are arbitraryabsolute values, which are arbitrary. 
If one of the amplitudes is chosen to be 1 or any number, we say that 
amplitudes ratio is normalized to that number. 
The normalized amplitude ratios are called the normal modes and p
designated by                  . 
From equation 6.1.24 and 6.1.25, the two normal modes of this 
problem are:

In the 1st normal mode, the two masses move in the same direction 
and are said to be in phase and in the 2nd mode the two massesand are said to be in phase and in the 2nd mode the two masses 
move in the opposite direction and are said to be out of phase. Also 
in the first mode when the second mass moves unit distance, the first 
mass moves 0.731 units in the same direction and in the second 
mode when the second mass moves unit distance; the first massmode, when the second mass moves unit distance; the first mass 
moves 2.73 units in opposite direction.



Two Degree of Freedom Vibration System

When the system is disturbed from its initial position, the resulting 
free-vibration of the system will be a combination of the different 
normal modes The participation of different modes will depend onnormal modes. The participation of different modes will depend on 
the initial conditions of displacements and velocities. So for a system 
the free vibration can be given by

Here A and B are part of participation of first and second modes 
respectively in the resulting free vibration and         and             are 
thethe 
phase difference. They depend on the initial conditions. This is 
explained with the help of the following example.
Example : p
Let us consider the same spring-mass problem (figure 6.2.1) for 
which the natural frequencies and normal modes are determined. We 
have to determine the resulting free vibration when the system is 
given an initial displacementgiven an initial displacement 



Two Degree of Freedom Vibration System
Free vibration using normal modes

Figure 6 2 1Figure 6.2.1
Solution : Any free vibration can be considered to be the superposition of its 
normal modes. For each of these modes the time solution can be expressed 
as:



Two Degree of Freedom Vibration SystemTwo Degree of Freedom Vibration System

The general solution for the free vibration can then be written as:

where A and B allow different amounts of each mode and   
and   allows the two modes different phases or starting 

valuesvalues.
Substituting: 



Two Degree of Freedom Vibration System
Substituting in 1st set: 

Hence the resulting free vibration is



Two Degree of Freedom Vibration System
Normal modes from eigenvalues
The equation of motion for a two-degree-of freedom system can be written in 
matrix form as 

(6.2.)

where M and K are the mass and stiffness matrix respectively; x is is the 
vector of generalized co-ordinates. Now pre-multiplying   in both side of 
equation 6.2. one may get 

or,  
where                            is known as the dynamic matrix. Now to find the 
normal modes,

, the above equation will reduce to 

where                             and 

From equation 6.2. it is apparent that the free vibration problem in this case 
is reduced to that of finding the eigenvalues and eigenvectors of the matrix A 
. 



Damped-free vibration of two-dof 
systems

Consider a two degrees of freedom system with damping as shown in figure 
6 2 76.2.7 

Figure 6 2 7Figure 6.2.7 
Now the equation of motion of this system can be given by 

(6 2 a)(6.2.a)



Damped-free vibration of two-dof 
systems

As in the previous case, here also the solution of the above equations can be 
ittwritten as 

and  (6.2.b)
where A1, A2 and s are constants. Substituting 6.2.b in 6.2.a , one may write 

Now for a nontrivial response i e for non zero values of A1and A2 theNow for a nontrivial response i.e., for non-zero values of A1and A2, the 
determinant of their coefficient matrix must vanish. Hence 



Damped-free vibration of two-dof systems
or 
which is a fourth order equation in s and is known as the 
characteristic equation of the system. This equation is to be solved to q y q
get four roots. The general solution of the system can be given by 

Here                         are four  arbitrary constants to be determined 
from the initial conditions and the coefficients.                         are 
related to and can be determined asrelated to         and can be determined as

For a physical system with damping the motion will die out with timeFor a physical system with damping, the motion will die out with time. 
For a stable system, all the four roots must be either real negative 
numbers or complex number with negative real parts. It may be 
recalled that, if the roots contain complex conjugate numbers, the motion 
will be oscillatory.



Damped-free vibration of two-dof 
systems(SEMI-DEFINITE SYSTEMS)

The systems with have one of their natural frequencies equal to zero 
are known as semi-definite or degenerate systems. One can show 
that the following two systems are degenerate systems.

Figure 6.2.8

From figure 6.2.8, the equation of motion of the system is



Damped-free vibration of two-dof 
systems(SEMI-DEFINITE SYSTEMS)

Assuming the solution                                  and   

So for non-zero values of  

or  

or  

or 



Damped-free vibration of two-dof 
systems(SEMI-DEFINITE SYSTEMS)

and

Hence, the system is a semi-definite or degenerate system. Corresponding to 
the first mode frequency, i.e                .            So the system will have a q y, y
rigid-body motion. For the second mode frequency 

amplitude ratio is inversely proportional to the mass ratio the system. Similarly 
one may show for the two-rotor system, 

the ratio of angle of rotation inversely proportional to the moment of inertia of 
the rotors.



Two Degree of Freedom Forced Harmonic 
Vibration System

Consider a system excited by a harmonic force                 expressed by the y y p y
matrix equation

(6.3.1)

Since the system is undamped, the solution can be assumed as 

(6.3.2)



Two Degree of Freedom Forced Harmonic 
Vibration System

Substituting equation 6.3.2 in equation 6.3.1, one obtains
Hence 

or 



Two Degree of Freedom Forced Harmonic 
Vibration System

Hence

where  



Two Degree of Freedom Forced Harmonic 
Vibration System

Two vectors x1 and x2 are normal if                    and   

Two vectors x1 and x2 are orthogonal if  . 

If x1 and x2 normal and orthogonal, they are called orthonormal, in that case

where             is the Kronecker delta, defined by   



Two Degree of Freedom Forced Harmonic 
Vibration System

Example 6.3.1

Figure 6.3.1
Consider the system shown in figure 6.3.1 where the mass             is 
subjected to a force              . Find the response of the system                    
whenwhen  

and 



Two Degree of Freedom Forced Harmonic 
Vibration System

Solution : 
The equation of motion of this system can be written as

So assuming the solution 

and proceeding as explained before 



Two Degree of Freedom Forced Harmonic 
Vibration System

or  

where,                and                 are normal mode frequencies of this system.
Hence, 



Two Degree of Freedom Forced Harmonic 
Vibration System

So it may be observed that the system will have y y
maximum vibration when                    or            Also 
it may be observed that                                  when 



TUNED VIBRATION ABSORBER

Consider a vibrating system of mass          , stiffness        , subjected to a 
force                . As studied in case of forced vibration of single-degree of 
freedom system the system will have a steady state response given byfreedom system, the system will have a steady state response given by 

(1) 

which will be maximum when 
Now to absorb this vibration, one may add a
secondary spring and mass system as shownsecondary spring and mass system as shown
in figure 13. 

Fig.13g



TUNED VIBRATION ABSORBER

The equation of motion for this system can be given by 

(2)

As we know for steady state vibration, the system will vibrate with a frequency 
of the external excitation; we can assume the solution to be

(3)
Substituting Equation (3) in equation (2) one may writeSubstituting Equation (3) in equation (2) one may write 

(4)



VIBRATION ABSORBER

Or, (5)

Using Cramer's rule one may write

(6)

(7)



VIBRATION ABSORBER
where (9)

NNow

(10)

Here                      are the roots of the characteristic equation . One 
may note that these roots are the normal mode frequency for this 
two-degrees of freedom system. These free-vibration frequencies 

b i bcan be given by 
(11)



VIBRATION ABSORBER
From equation (6), it is clear that, 

Hence, if a system called the primary system with a stiffness         
mass          is subjected to an exciting force 

b ti t ib t it i ibl t l t l li i tor base motion to vibrate, it is possible to completely eliminate 
the vibration of the primary system by suitably designing an 
attached spring-mass system (secondary system) with stiffness          
and mass           such that the natural frequency of the q y
secondary system coincide with the exciting frequency. 
. (12) 

This is the principle of dynamic vibration absorber. 
From equation (1) it may be noted that the primary system will have 
resonance when the natural frequency of the primary system q y p y y
coincide with that of the excitation frequency. 



VIBRATION ABSORBER
Hence to reduce the vibration at resonance of the primary system 
one should design the secondary system such that the natural 
frequency of both the components coincidesfrequency of both the components coincides. 

For this condition



VIBRATION ABSORBER

Substituting                 and                   , the above equation reduces 
to 

or, 



VIBRATION ABSORBER
For,                      , 

(61)

and

(62)(62)



VIBRATION ABSORBER

To keep the displacement of secondary mass small the stiffness ofTo keep the displacement of secondary mass small, the stiffness of 
the secondary spring should be very large. 
To have this the secondary mass should also be large which is not 
desirable from practical point of view. 
Hence a compromise is usually made between the amplitude and 
the mass ratio. The mass ratio is usually kept between 0.05 and 
0.25.



VIBRATION ABSORBER
Resonant frequency of the vibration absorber



VIBRATION ABSORBER



CENTRIFUGAL PENDULUM VIBRATION 
ABSORBER 

The centrifugal pendulum vibration absorber was devised and patented in 
F b t 1935 d t th ti it i d d tl i d dFrance about 1935 and at the same time it was independently conceived and 
put into practice by E. S. Taylor. Its purpose was to overcome serious 
torsional vibration problem inherent in geared radial aircraft-engine propeller 
system.
Later it was modified and incorporated into automobile IC engines in order to 
reduce the torsional vibrations of the crankshaft. This was done by integrating 
the absorber mass with crankshaft counter balance mass. 
The tuned vibration absorber is only effective when the frequency of externalThe tuned vibration absorber is only effective when the frequency of external 
excitation equals to the natural frequency of the secondary spring and mass 
system. But in many cases, for example in case of an automobile engine, the 
exciting torques are proportional to the rotational speed n' which may vary 
over a wide rangeover a wide range. 
For the absorber to be effective, its natural frequency must also be 
proportional to the speed. The characteristics of the centrifugal pendulum are 
ideally suited for this purpose.  
Placing the coordinates through point O', parallel and normal to r, the line r  
rotates with angular velocity (                ).



CENTRIFUGAL PENDULUM VIBRATION 
ABSORBERABSORBER 



CENTRIFUGAL PENDULUM 
VIBRATION ABSORBER

acceleration of mass  

(63)
Since the moment about   is zero, ,

(64)
Assuming to be small soAssuming          to be small,                               , so 

(65)
If th ti f th h l t b t d t ti lIf we assume the motion of the wheel to be a steady rotation   plus a 
small sinusoidal oscillation of frequency       , one may write 

)(66)



CENTRIFUGAL PENDULUM 
VIBRATION ABSORBER

(67)

(68)( )
Substituting the above equations in equation (65) yields, 

(69)(69)
Hence the natural frequency of the pendulum is 

(70)(70)
and its steady-state solution is 

(71)



CENTRIFUGAL PENDULUM 
VIBRATION ABSORBER

It may be noted that the same pendulum in a gravity field would have 
t l f fa natural frequency of          .

So it may be noted that for the centrifugal pendulum the gravity field 
is replaced by the centrifugal fieldis replaced by the centrifugal field             . 

Torque exerted by the pendulum on the wheel
With the          component of            equal to zero, the pendulum 
force is a tension along       , given by        times the      component of          

. 
g g y p

. 

(72)

Now assuming small angle of rotation 

(73)



CENTRIFUGAL PENDULUM 
VIBRATION ABSORBER

Now substituting the (73) in (72),

(74)

Hence the effective inertia can be written as 

(75)

which can be   at its natural frequency. This possesses some difficulties in the 
design of the pendulum. For example to suppress a disturbing torque of 
frequency equal to four times the natural speed n , the pendulum must meet 
the requirementthe requirement

. 



CENTRIFUGAL PENDULUM 
VIBRATION ABSORBER

Hence, as the length of the pendulum                     becomes very 
small it will be difficult to design it. To avoid this one may go for 
Chilton bifilar design.

DESIGN CONSIDERATION 
To suppress a disturbing torque of frequency equal to 5 times the 
torsional frequency n, the pendulum must meet the requirement 


