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U-3, Forced Harmonic Vibration
Steady State Response due to Harmonic Oscillation :
Consider a spring-mass-damper system as shown in figure 4.1. The 
equation of motion of this system subjected to a harmonic force                         
can be given by

(4.1) 
where, m , k and c are the mass, spring stiffness and damping 
coefficient of the system, F is the amplitude of the force, w is the 
excitation frequency or driving frequency.

Figure 4.1 Harmonically excited system



Forced Harmonic Vibration 
The steady state response of the system can be determined 
by solving equation(4.1) in many different ways. Here a 
simpler graphical method is used which will give physical 
understanding to this dynamic problem. From solution of 
differential equations it is known that the steady state solutiondifferential equations it is known that the steady state solution 
(particular integral) will be of the form 

As each term of equation (4.1) represents a forcing term viz., first, second and 
thi d t t th i ti f i f d th d i f ThFigure 4 2: Force polygon

(4.2)

third terms, represent the inertia force, spring force, and the damping forces. The 
term in the right hand side of equation(4.1) is the applied force. One may draw a 
close polygon as shown in figure 4.2 considering the equilibrium of the system 
under the action of these forces. Considering a reference line these forces can be 
presented as follows. 

Figure 4.2: Force polygon

(this force is perpendicular to the damping force and is in opposite

•Spring force = with the reference line, 
represented by line OA). 

(This force will be perpendicular to the spring force, 
represented by line AB).

Damping force =

Inertia force =

(This force will make an angle

(this force is perpendicular to the damping force and is in opposite 
direction with the spring force and is represented by line BC) . 

which can be drawn at an angle with respect to the reference 
line and is represented by line 
OC.

Applied force =



Forced Harmonic Vibration
From equation (1), the resultant of the spring force, damping force 
and the inertia force will be the applied force, which is clearly shown 
in figure 4.2. 
It may be noted that till now, we don't know about the magnitude of X
and which can be easily computed from Figure 2 Drawing a lineand       which can be easily computed from Figure 2. Drawing a line 
CD parallel to AB, from the triangle OCD of Figure 2, 

•Natural frequency 

•Critical damping 

•Damping factor or damping ratio 

Hence, 



Forced Harmonic Vibration

or 

As the ratio is the static deflection of the spring,

is known as the magnification factor or amplitude ratio of the 
system       



Forced Harmonic Vibration



Forced Harmonic Vibration
Following observation can be made from these plots. 
For undamped system ( i.e.         ) the magnification factor tends to 
infinity when the frequency of external excitation equals natural 
frequency of the system                 . 
But for underdamped systems the maximum amplitude of excitation 
has a definite value and it occurs at a frequency 
For frequency of external excitation very less than the natural 
frequency of the system, with increase in frequency ratio, the 
dynamic deflection ( X ) dominates the static deflection            , the 
magnification factor increases till it reaches a maximum value atmagnification factor increases till it reaches a maximum value at 
resonant frequency         . 
For             , the magnification factor decreases and for very high 
value of frequency ratio ( say ) q y ( y )
One may observe that with increase in damping ratio, the resonant 

response amplitude decreases. 
Irrespective of value of       , at          , the phase angle          . p p g



Forced Harmonic Vibration
For,             , phase angle 

For             , phase angle    approaches        for very low value of     

From phase angle and frequency ratio plot it is clear that, for very low 
value of frequency ratio, phase angle tends to zero and at resonant 
frequency, it is        and for very high value of frequency ratio it is        
. 

For a underdamped system the total response of the system which is the combination
of transient response and steady state response can be given by 

The parameter will depend on the initial conditions.

, the first part of equation (6) tends to zero and second part remainsIt may be noted that as 



Forced Harmonic Vibration
Hence 

(4.12)( )

where                                    (from equation (4.10) and (4.11)) 

or (4.13)

It may be noted that equation (4.12) and (4.13) are same as equation (4.3) and (4.5)



Rotating Unbalance
One may find many rotating systems in industrial applications. The 
unbalanced force in such a system can be represented by a mass m 
with eccentricity e , which is rotating with angular velocity as shown 
in Figure 4 1in Figure 4.1. 

Figure 4.2. Freebody diagram of the system 
Figure 4.1 : Vibrating system 
with rotating unbalance 



Rotating Unbalance
Let x be the displacement of the non rotating mass (M-m) from the 
static equilibrium position, then the displacement of the rotating mass 
m is               
F th f b d di f th t h i fi 4 2 thFrom the freebody diagram of the system shown in figure 4.2, the 
equation of motion is

(4 1)(4.1)
or (4.2)

This equation is same as equation (1) where F is replaced by         . 
So from the force polygon as shown in figure 4.3

(4.3)

(4 4)or (4.4)



Rotating Unbalance

(4.5) 
or

(4.6)

and (4.7) 

Figure 4.3: Force polygon

So the complete solution becomes

(4.8) 



WHIRLING OF SHAFT 

Whirling is defined as the rotation of the plane made by the 
bent shaft and the line of the centre of the bearing It occursbent shaft and the line of the centre of the bearing. It occurs 
due to a number of factors, some of which may include

(i) eccentricity,
(ii) unbalanced mass,( )
(iii) gyroscopic forces, 
(iv) fluid friction in bearing, viscous damping. 

Figure 4.6: Whirling of shaft



WHIRLING OF SHAFT 
Consider a shaft AB on which a disc is mounted at S . G is the mass 
center of the disc, which is at a distance e from S. As the mass 
center of the disc is not on the shaft center, when the shaft rotates, it 
will be subjected to a centrifugal force This force will try to bend thewill be subjected to a centrifugal force. This force will try to bend the 
shaft. Now the neutral axis of the shaft, which is represented by line 
ASB, is different from the line joining the bearing centers AOB. The 
rotation of the plane containing the line joining bearing centers and 

f ( O S ) fthe bend shaft (in this case it is AOBSA) is called the whirling of the 
shaft. 
Considering unit vectors i , j , k as shown in the figure 4.6(b), the 
acceleration of point G can be given byacceleration of point G can be given by 

(4.9)

A i i d i ti t S Th ti f ti iAssuming a viscous damping acting at S. The equation of motion in 
radial direction

(4.10)
(4 11(4.11



WHIRLING OF SHAFT 

(4.12)
(4.13)(4.13)

Considering the synchronous whirl case, i.e. 
(4 14)(4.14)

where      is the phase angle between e and r . 
Taking ,                              from equation (4.12)

(4.14)
and 

(4.15)



WHIRLING OF SHAFT 

Hence, 
(4.16)

as                          and 

From equation (15), (4.18)q ( ), ( )

Substituting equation (4.18) in equation (4.15) yields g q ( ) q ( ) y

(4.19)

or

(4.20) 



WHIRLING OF SHAFT 

(4.21) 

(4.22)

The eccentricity line e = SG leads the displacement line r = OS by 
phase angle which depends on the amount of damping and thephase angle         which depends on the amount of damping and the 
rotation speed ratio 
When the rotational speed equals to the natural frequency or critical 
speed, the amplitude is restrained by damping only. p , p y p g y
From equation (22) at very high speed , 
and the center of mass G tends to approach the fixed point O and the 
shaft center S rotates about it in a circle of radius e.



SUPPORT MOTION
Many machine components or instruments are subjected to forces 
from the support. For example while moving in a vehicle, the ground 
undulation will cause vibration, which will be transmitted, to the 

S h t b d ll d b ipassenger. Such a system can be modelled by a spring-mass 
damper system as shown in figure 10.
Here the support motion is considered in the form of                      , 
which is transmitted to mass m by spring (stiffness k) and damperwhich is transmitted to mass m , by spring (stiffness k) and damper 
(damping coefficient c).
Let x be the vibration of mass about its equilibrium position. 

Figure 4.1: A system subjected to support motion Figure 4.2: Freebody diagram



SUPPORT MOTION

Figure 4.1: A system subjected to support motion and
Figure 4.2: Freebody diagram
Now to derive the equation of motion, from the freebody diagram ofNow to derive the equation of motion, from the freebody diagram of 
the mass as shown figure 2 

(4.1)                     
let z = x-y (4 2)let z  x y (4.2)

(4.3)
(4.4)

As equation (4.4) is similar to equation (1) solution of equation    (4.4) 
can be written as

(4 5)(4.5)

and (6)
(4.6)



SUPPORT MOTION
If the absolute motion x of the mass is required, we can solve for          

x = z + y. 
Using the exponential form of harmonic motion

(4.7)
(4.8)
(4.9)(4.9)

Substituting equation (4.9) in (4.1) one obtains
(4.10) 

(4.11)
(4.12)

(4.13)

(4.14)



SUPPORT MOTION
The steady state amplitude and Phase from this equation are

(4.15)(4.15)

(4 16)(4.16)

Figure 4.3: Amplitude ratio ~ frequency ratio plot for system with support motion



SUPPORT MOTION
. 

Figure 4.4: Phase angle ~ frequency ratio plot for system with support motiong g q y p y pp

From figure 4.3, it is clear that when the frequency of support motion nearly equal to the 
natural frequency of the system, resonance occurs in the system. 
This resonant amplitude decreases with increase in damping ratio for                   . At

irrespective of damping factor the mass vibrate with an amplitude equal to that of the, irrespective of damping factor, the mass vibrate with an amplitude equal to that of the

support and for , amplitude ratio becomes less than 1, indicating that the mass 
will vibrate with an amplitude less than the support motion. But with increase in damping, in this 
case, the amplitude of vibration of the mass will increase. So in order to reduce the vibration of the 
mass, one should operate the system at a frequency very much greater than                               times the, p y q y y g
natural frequency of the system. This is the principle of vibration isolation.

times the 



VIBRATION ISOLATION 
In many industrial applications, one may find the vibrating machine 
transmit forces to ground which in turn vibrate the neighbouring 
machines. So in that contest it is necessary to calculate how much 
force is transmitted to ground from the machine or from the ground toforce is transmitted to ground from the machine or from the ground to 
the machine. 

Figure 4.5 shows a system subjected to a force 

and vibrating with 
. 
This force will be transmitted to the ground only by the spring and damper. 

Figure 4.5 : A vibrating system

s o ce be t a s tted to t e g ou d o y by t e sp g a d da pe
Force transmitted to the ground

(4.18)

It is known that for a disturbing force 

, the amplitude of resulting oscillation

(4.19)



VIBRATION ISOLATION
Substituting equation (4.19) in (4.18) and defining the transmissibility 
TR as the ratio of the force transmitted Force to the disturbing force 
one obtains 

(4.20)

Comparing equation (4.20) with equation (4.17) for support motion, it 
can be noted that

(4.21)

When damping is negligible 

(4.22)



VIBRATION ISOLATION
to be used always greater than 

ReplacingReplacing 

(4 23)(4.23)

To reduce the amplitude X of the isolated mass m without 
changing TR, m is often mounted on a large mass M. The 
stiffness K must then be increased to keep ratio K/(m+M) p ( )
constant. The amplitude X is, however reduced, because K
appears in the denominator of the expression 



VIBRATION ISOLATION

(4.24)

Figure 4.6: Transmissibility ~frequency ratio plot



VIBRATION ISOLATION

Figure 4.6 shows the variation transmissibility with 
frequency ratio and it can be noted that vibration 

ill b i l t d h th t t twill be isolated when the system operates at a 
frequency ratio higher than 



Equivalent Viscous Damping
It is assumed that the energy dissipation takes place due to viscous 
type of damping where the damping force is proportional to velocity. 
But there are systems where the damping takes place in many otherBut there are systems where the damping takes place in many other 
ways. For example, one may take surface to surface contact in 
vibrating systems and take Coulomb friction into account. In these 
cases one may still use the derived equations by considering an 
eq i alent isco s damping This can be achie ed b eq ating theequivalent viscous damping. This can be achieved by equating the 
energy dissipated in the original and the equivalent system. 
The primary influence of damping on the oscillatory systems is that of 
limiting the amplitude at resonance Damping has little influence onlimiting the amplitude at resonance. Damping has little influence on 
the response in the frequency regions away from resonance. In case 
of viscous damping, the amplitude at resonance is 

(4 25)(4.25)

(4 26)Where must be evaluated from the particular type (4.26) Where          must be evaluated from the particular type 
of damping



Structural Damping
When materials are cyclically stressed, energy is dissipated 
internally within the material itself. Internal damping fitting this 
classification is called solid damping or structural dampingclassification is called solid damping or structural damping. 
With the energy dissipation per cycle proportional to the 
square of the vibration amplitude, the loss coefficient is a 
constant and the shape of the hysteresis curve remainsconstant and the shape of the hysteresis curve remains 
unchanged with amplitude and independent of the strain rate. 
Energy dissipated by structural damping can be written as

(4 27)(4.27)

Where     is a constant with units of force displacement. 
By the concept of equivalent viscous damping       

or (4.28)



Coulomb Damping
Coulomb damping is mechanical damping that absorbs energy by 
sliding friction, as opposed to viscous damping, which absorbs 
energy in fluid, or viscous, friction. Sliding friction is a constant valueenergy in fluid, or viscous, friction. Sliding friction is a constant value 
regardless of displacement or velocity. Damping of large complex 
structures with non-welded joints, such as airplane wings, exhibit 
coulomb damping. 
Work done per cycle by the Coulomb 
force 

(4.29)
For calculating equivalent viscous damping

(4.30)
From the above equation equivalent viscous damping is found

(4.31) 



Summary
Some important features of steady state response for 
harmonically excited systems are as follows-
Th t d t t i l f th fThe steady state response is always of the form                    . 
Where it is having same frequency as of forcing. X is 
amplitude of the response, which is strongly dependent on the 
frequency of excitation and on the properties of the springfrequency of excitation, and on the properties of the spring-
mass system. 
There is a phase lag      between the forcing and the system 
response which depends on the frequency of excitation andresponse, which depends on the frequency of excitation and 
the properties of the spring-mass system. 
The steady state response of a forced, damped, spring mass 
system is independent of initial conditionssystem is independent of initial conditions. 
In this chapter response due to rotating unbalance, support 
motion, whirling of shaft and equivalent damping are also 
disc sseddiscussed.


