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U-II,FREE AND DAMPED VIBRATIONS

FREE VIBRATIONS 
Objective of the present section will be to write the equation of 
motion of a system and evaluate its natural frequency, which is 
mainly a function of mass, stiffness, and damping of the system from 
its general solutionits general solution. 
In many pratical situation, damping has little influence on the natural 
frequency and may be neglected in its calculation. 
In absence of damping the system can be considered asIn absence of damping, the system can be considered as 
conservative and principle of conservation of energy offers another 
approach to the calculation of the natural frequency. 
The effect of damping is mainly evident in diminishing of the vibrationThe effect of damping is mainly evident in diminishing of the vibration 
amplitude at or near the resonance



FREE AND DAMPED VIBRATIONS

Vibration Model : 
The basic vibration model consists of a mass, spring (stiffness) and 
damper (damping) as shown in Figure 2.1. 

Figure 2.1: Spring-damper vibration model. 

The inertia force model is                                        (2.1)
h i th i k i th l ti i / 2 d F iwhere m is the mass in kg,     is the acceleration in m/sec2 and Fi is 

the inertia force in N. 



FREE AND DAMPED VIBRATIONS

The linear stiffness force model is
Fs= kx (2.2) 
where k is the stiffness (N/m), x is the displacement and Fs is the 
spring force.
The damping force model for the viscous damping is 

(2.3)
where c is the damping coefficient in N/m/sec,     is the velocity in p g , y
m/sec and Fd is the damping force.
Undamped Free Vibration
A spring mass system as shown in Figure 2.2 is considered. For p g y g
simplicity at present the damping is not considered. 
The direction of x in the downward direction is positive. 
Also velocity,      ,acceleration,     ,and force, F, are positive in the y, , , , , , p
downward direction as shown in Figure 2.2



EQUATION OF MOTION (EOM) FOR (2.4)

FREE VIBRATIONS

Figure 2.2

From Figure 2.2(d) on application of Newton's second law, we have

or 

From Figure 2.2(b), g ( ),

where is the natural frequency (in rads/sec). 



SOLUTION OF EOM-
FREE VIBRATIONS

Solution of EOM : 
The general solution of equation (2.5) can be written as 

(2.7)
where A and B are two arbitrary constants which depend upon initialwhere A and B are two arbitrary constants, which depend upon initial 
conditions i.e. x (0) and       . Equation (2.5) can be differentiated to 
give

(2.8)( )
On application of initial conditions in equation (2.7) and (2.8), we get 

x (0) = B  and 

or d B (0) (2 9)or and B = x(0)                          (2.9)



SOLUTION OF EOM- FREE VIBRATIONS

where  X is the amplitude,     is the circular frequency and     is the 
phase. The  undamped  free vibration executes the simple 
harmonic motion as shown in Figure 2.3.



(2.13)

SOLUTION OF EOM- FREE VIBRATIONS

Since sine & cosine functions repeat after 2    radians (i.e. p (
Frequency   Time period = 2       ), we  have

The natural frequency (in rad /sec or Hertz) can be written asThe natural frequency (in rad /sec or Hertz) can be written as

Here T , f d d t & tiff f th tHere T , f 
, are dependent upon mass & stiffness of the system, 

which are properties of the system.
Above analysis is valid for all kind of SDOF system 
including beam or torsional members. 
For torsional vibrations the mass may be replaced by the 
mass moment of inertia and stiffness by stiffness ofmass moment of inertia and stiffness by stiffness of 
torsional spring. For stepped shaft an equivalent stiffness 
can be taken or for distributed mass an equivalent lumped 
mass can be taken. 
The undamped  free response can also be written as

where A & B are constants to be determined from initial conditions,
which is same as equation (2.7).



Equivalent Stiffness of Springs
Equivalent Stiffness of Series and Parallel Springs :
For this system having springs connected in series or parallel, 
equation (2.13) is still valid with the equivalent stiffness as shown in 
Figures 2.4 and 2.5. 

Figure 2.4

Figure 2.5



Equivalent Stiffness of a Cantilever 
Beam 

The deflection of a cantilever beam as shown inFig. 2.6

The equivalent stiffness is given as

is the deflection,  
E = Young's modulous,    
I = mass moment of inertiaI = mass moment of inertia, 

l = length of the beam, 
P is the load.



Energy Method :

Energy method :
In a conservative system (i.e. with no damping) the total 
energy is constant, and differential equation of motion can 
also be established by the principle of conservation of energy.
F th f ib ti f d d tFor the free vibration of undamped system:
Energy=(partly kinetic energy + partly potential energy). 
Kinetic energy T is stored in mass by virtue of its velocity.
Potential energy U is stored in the form of strain energy in 
elastic deformation or work done in a force field such as 
gravity, magnetic field etc.

t tT + U = constant (2.15) 
Hence   

(2.16) 



E M th dEnergy Method
Our interest is to find natural frequency of the system, writing 
equation (2.15) for two positions i.e.

T1 + U1 = T2 +U2 = constant (2.17) 
where, 1 & 2 represents two instants of time.
Let 1 represents a static equilibrium position (choosing this as 
the reference point of potential energy, here U1=0 )
and 2 represents the position corresponding to maximumand 2 represents the position corresponding to maximum 
displacement of mass and at this position velocity of mass will 
be zero and hence T2 = 0. Equation (2.17) reduces to

T1 + 0 = 0 +U2 (2 18)T1 + 0  0 +U2 (2.18)
If mass is undergoing harmonic motion then T1 & U2 are 

maximum values.
Tma Uma (2 19)Tmax = Umax (2.19)



D d S tDamped System
Vibration systems may encounter damping of following types: 
Internal molecular friction. 
Sliding friction 
Fluid resistance 
G ll th ti l d l f h d i i itGenerally mathematical model of such damping is quite 
complicated and not suitable for vibration analysis. 
Simplified mathematical model (such as viscous damping or 
dash-pot) have been developed which leads to simplifieddash pot) have been developed which leads to simplified 
formulation.
A mathematical model of damping in which force is 
proportional to displacement i.e
Fd i t ibl b ith li ti thi d lFd = cx is not possible because with cyclic motion this model 
will encounter an area of magnitude equal to zero.
So dissipation of energy is not possible with this model.



VISCOUSLY DAMPED FREE VIBRATION

Viscous damping force is expressed as, 
(3.16)

c is the constant of proportionality and it is called damping 
co-efficient.
Figure 3.2 shows spring-damper-mass system with free body 
diagram. 
From free body diagram, we havey g ,

(3.17)

(3.18)



VISCOUSLY DAMPED FREE VIBRATION

Figure 3.2: Spring-damper-mass system 

L t l ti f ti (3 18) f th f ll i fLet us assume a solution of equation(3.18) of the following form 

where s is a constant (can be a complex number) and t is time.

So that and 

on substituting in equation (3.18), we get, 
a characteristic equation (Frequency equation) 



VISCOUSLY DAMPED FREE VIBRATION

E ti (3 20) h th f ll i f

solution of which is given as 

Equation (3.20) has the following form

(3.21)

Hence the general solution of equation (3.18) from equations (3.19) and (3.21) is given by 
the equation

(3.22)

Substituting equation (3.21) into equation (3.22).

(3.23)



VISCOUSLY DAMPED FREE 
VIBRATION

The term outside the bracket in RHS is an exponentially decaying 
function. The term

can have three cases.

(i)                            : exponents in equation (3.23) will be real numbers. 
No oscillation is possible as shown in Figure 3.3. 
This is an overdamped system (Figure 3.3). 

Fi 3 3 O d d tFigure 3.3: Overdamped system



VISCOUSLY DAMPED FREE 
VIBRATION

ii )                            : exponents in equation (3.23) are 

imaginary numbers : 

we can write 

th ti (3 23) t k th f ll i f wherethe equation (3.23) takes the following form where 

Let                                 and                                   , equation (3.23) 
can be written as 

(3.24) where



VISCOUSLY DAMPED FREE 
VIBRATION

iii) Critical case between oscillatory and non-oscillatory motion 

:Damping corresponding to this case is called 
critical damping, , cc

(3.25)

Any damping can be expressed in terms of the critical damping by a 
non-dimensional number          called the damping ratio. 

(3.26)
Response corresponding to the criticalResponse corresponding to the critical
damping case is shown in      Figure 3.4 
for various initial conditions 

Figure 3.4: Critical damping



VISCOUSLY DAMPED FREE 
VIBRATION

Equation of motion for damped system can be expressed in terms of      and        as
(3 27)(3.27)

This form of equation is useful in identification of natural frequency and damping of 
system. 

The roots of characteristic equation (3.20) can be written as q ( )
(3.28) 

withwith 

Depending upon value of damping ratio we can have the following cases
, overdamped condition (Figure 3.3), overdamped condition   (Figure 3.3) 
, underdamped condition (Figure 3.7)
,  critical damping              (Figure 3.4) 
, undamped system         (Figure 3.8) 

Equation (3 28) is shown in complex plane Figure 3 5Equation (3.28) is shown in complex plane Figure 3.5. 
On the Figure 3.5 various points are described as follows.



VISCOUSLY DAMPED FREE 
VIBRATION

For         ,                                               

for 

s1 and s2 are complex conjugate
points on a circular arc,

, 

, 

always real numbers

,

, 

always real numbers
Figure 3.5: Frequency equation in complex plane



VISCOUSLY DAMPED FREE 
VIBRATION

In Figure 3.5 various points are as follows
At  A and B,                                              : undamped
Between A and E and between B and E : underdamped
At E,                                                          : critical damping, p g
Between E to F and E to G,                     : overdamped
1) Oscillatory motion :            [, underdamped case]

General solution equation (3 19) becomes:General solution equation (3.19) becomes: 

(3.29)

(3.30)



VISCOUSLY DAMPED FREE 
VIBRATION

(3.31) 

From equation (3.30), we have where and and , 

where C & D and X, are arbitrary constants ( to be determined from initial 
conditions, x (0) and (0)., ( ) (0).

On application of initial conditions we get x(0)=C and On application of initial conditions, we get ( )

which gives



VISCOUSLY DAMPED FREE 
VIBRATION

Hence, equation (3.30), becomes
(3.32)

Equation (3.32) indicates that the frequency of damped system is equal to,

(3.33)

It should be noted that for small

( which is the case of most engineering systems))


