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U-I,FUNDAMENTALS OF VIBRATIONS

Oscillating Motions : g
The study of vibrations is concerned with the oscillating motion of 
elastic bodies and the force associated with them. 
All bodies possessing mass and elasticity are capable of vibrations. bod es possess g ass a d e as c y a e capab e o b a o s
Most engineering machines and structures experience vibrations to 
some degree and their design generally requires consideration of 
their oscillatory motions. 
Oscillatory systems can be broadly characterized as linear or 
nonlinear.
Linear systems : 

The principle of superposition holds 
Mathematical technique available for their analysis are well 
developed. 



FUNDAMENTALS OF VIBRATIONS
Nonlinear systems :

The principle of superposition doesn't hold p p p p
The technique for the analysis of the nonlinear systems are under 
development (or less well known) and difficult to apply. 

All systems tend to become nonlinear with increasing amplitudes of 
oscillations. 
There are two general classes of vibrations free and forced.
Free vibration takes place when a system oscillates under the 
action of forces inherent in the system itself due to initial disturbance, 
and when the externally applied forces are absent.
The system under free vibration will vibrate at one or more of its 
nat ral freq encies hich are properties of the d namical s stemnatural frequencies, which are properties of the dynamical system, 
established by its mass and stiffness distribution
Forced vibration takes place under the excitation of external forces 
is called forced vibrationis called forced vibration. 



FREE AND FORCED VIBRATIONS
If excitation is harmonic, the system is forced to vibrate at excitation 
frequency If the frequency of excitation coincide with one of thefrequency . If the frequency of excitation coincide with one of the 
natural frequencies of the system, a condition of resonance is 
encountered and dangerously large oscillations may result, which 
results in failure of major structures, i.e., bridges, buildings, or 

i l i tairplane wings etc. 
Thus calculation of natural frequencies is of major importance in the 
study of vibrations. 
B f f i ti & th i t ib ti tBecause of friction & other resistances vibrating systems are 
subjected to damping to some degree due to dissipation of     
energy.
Damping has very little effect on natural frequency of the systemDamping has very little effect on natural frequency of the system, 
and hence the calculations for natural frequencies are generally 
made on the basis of no damping. 
Damping is of great importance in limiting the amplitude of p g g p g p
oscillation at resonance. 



DEGREES OF FREEDOM (DOF)
The number of independent co-ordinates required to describe the 
motion of a system is termed as degrees of freedom. 
For example 
Particle                  - 3 dof (positions) 
Rigid body 6 dofRigid body             -6 dof

(3-positions     and     3-orientations) 
Continuous elastic body    - infinite dof

(three positions to each particle of the body)(three positions to each particle of the body). 
If part of such continuous elastic bodies may be assumed to be rigid 
(or lumped) and the system may be considered to be dynamically 
equivalent to one having finite dof (or lumped mass systems).equivalent to one having finite dof (or lumped mass systems).
Large number of vibration problems can be analyzed with sufficient 
accuracy by reducing the system to one having a few dof. 



VIBRATION MEASUREMENT TERMINOLOGY

Peak value : Indicates the maximum response of a vibrating part. It 
also places a limitation on the space requirement. 
Average value : Indicates a steady or static value (somewhat like 
the DC level of an electrical current) and it is defined as 

(1.1)

where x(t) is the displacement, and T is the time span (for example 
time period)
For a complete cycle of sine waveFor a complete cycle of sine wave, 

(1.2)



MEAN AND MEAN SQUARE VALUE

For half cycle of the sine wave : 

where  A is the amplitude of the displacement.
Mean square value : Square of the displacement generally is 
associated with the energy of the vibration for which the mean 
square value is a measure and is defined assquare value is a measure and is defined as 

For a complete cycle of sine wave                  , we have



ROOT MEAN SQUARE VALUE (RMS)
Root mean square value (rms) : This is the square root of the mean 
square valuesquare value. 
For example : for a complete sine wave



DECIBEL (DB)
: It is a unit of the relative measurement of the vibration and sound. It 
is defined in terms of a power ratio: 

where p is the power, since power is proportion to square of 
amplitude of vibrations or voltages, which is easily measurable, 
hence

(1.6)
where A is the amplitude. For amplitude gain of 5, the decibel has a 
gain of 

(1 7)(1.7)
In vibrations decibel is used to express relative measured values of 
displacements, velocities and accelerations. 

(1.8)



DECIBEL (DB)
where z is the quantity under consideration (e.g. q y ( g
displacement, velocity or acceleration),       is the 
reference value ( e.g. for velocity                       and 
acceleration )acceleration                            ) .
For example              means 10 times the reference 
value ( i.e.                             ), and            means 100 
times the reference value ( i.e.                          )



VIBRATION TERMINOLOGY

Oscillatory Motion 
Repeat itself regularly for example pendulum of a wall clock 
Display irregularity for example earthquake 
Periodic Motion : This motion repeats at equal interval of time T. p q
Period of Oscillatory : The time taken for one repetition is called 
period. 
Frequency - , It is defined reciprocal of time period. q y , p p
The condition of the periodic motion is 

(   1.10) 
where motion is designated by time function x(t)where  motion is designated by time function x(t) .



HARMONIC MOTION

Harmonic motion 
Simplest form of periodic motion is harmonic motion and it is called 
simple harmonic motion (SHM). It can be expressed as 

(1.11)
where A is the amplitude of motion.
Harmonic motion is often represented by projection on line of a point 
that is moving on a circle at constant speed. 

n, t is the time instant and T is the period of motion.



SIMPLE HARMONIC MOTION

Figure 1.1: The Simple Harmonic Motion



SIMPLE HARMONIC MOTION

From Figure 1.1 , we have g ,

where x is the displacement and      is the circular frequency in 
rad/sec.ad/sec

(1.12)

where T is the period (sec) and f is the frequency (cycle/sec) of thewhere T is the period (sec) and f is the frequency (cycle/sec) of the 
harmonic motion.
The SHM repeats itself in      radians.
Displacement can be expressed as (1 13)Displacement can be expressed as                                        (1.13)
velocity can be expressed as                                                  (1.14)
acceleration can be written as                                                (1.15)



DISPACEMENT,VELOCITY AND ACCELERATION

Equations (1.12) to (1.14) are plotted in Figure 1.2

Fi 1 2 V i ti f di l t l it d l ti ithFigure 1.2 : Variation of displacement, velocity and acceleration with 
nondimensional time. 



SIMPLE HARMONIC MOTION
It should be noted from equations (1.12-1.14) that when displacement 
is a SHM the velocity and acceleration are also harmonic motion with 
same frequency of oscillation (i.e. displacement). However, lead insame frequency of oscillation (i.e. displacement). However, lead in 
phases occurs by 900 and 1800 respectively with respect to the 
displacement as shown in Figure 1.2. 
From equations (1.12) and (1.14) we find

(1.15)
In harmonic motion acceleration is proportional to the displacement and 
is directed towards the origin. 
The Newton's second law of motion states that the acceleration is 
proportional to the force. Hence for a spring (linear), we write 

(1.16)
where FS is the spring force and k is the stiffness of the spring. It 
executes harmonic motion as force is proportional to the displacement. 
(animation)



EXPONENTIAL FORM

Exponential form : From Euler's equation, we have
(1.17)

A rotating vector as shown in Figure 1.3 can be expressed as
(1.18)( )

where A is the magnitude,       is the orientation and j =       is the 
imaginary number. Equation (1.18) can also be written as

(1.19)( )
with

(1.20)
where z is the complex sinusoid x is the real component and y iswhere  z is the complex sinusoid, x is the real component and y is 
the imaginary component.



ARGAND VECTOR DIAGRAM

Differentiating equation (1.18) with respect to time gives

and

(1.21)

(1.22) 

From equation (1.19), we can write 

(1.23)

where 

is the complex conjugate of z as shown Figure 1.4. We can also write

where Re(z) is the real part of quantity z.
•The exponential form of the harmonic motion offers p
mathematical advantages over the trigonometric form. 



FOURIER’S SERIES

In this section, ƒ(x) denotes a function of the real variable x. This function is 
ll t k t b i di f i d 2 hi h i t th t ƒ( 2 )usually taken to be periodic, of period 2π, which is to say that ƒ(x + 2π) = 

ƒ(x), for all real numbers x. 
Fourier's formula for 2π-periodic functions using sines and cosines
For a periodic function ƒ(x) that is integrable on [−π π] the numbersFor a periodic function ƒ(x) that is integrable on [ π, π], the numbers

and

are called the Fourier coefficients of ƒ. One introduces the ƒ
partial sums of the Fourier series for ƒ, often denoted by



FOURIER’S  SERIES

The partial sums for ƒ are trigonometric 
polynomials. One expects that the functions SN ƒ
approximate the function ƒ, and that the 
approximation improves as N tends to infinity. The 
infinite suminfinite sum

is called the Fourier series of ƒ.



FOURIER’S  SERIES

The Fourier series does not always converge, and even when 
i d f ifi l 0 f h f hit does converge for a specific value x0 of x, the sum of the 
series at x0 may differ from the value ƒ(x0) of the function. 
It is one of the main questions in harmonic analysis to decide 
when Fourier series converge and when the sum is equal towhen Fourier series converge, and when the sum is equal to 
the original function.
If a function is square-integrable on the interval [−π, π], then 
the Fourier series converges to the function at almost everythe Fourier series converges to the function at almost every
point. 
In engineering applications, the Fourier series is generally 
presumed to converge everywhere except at discontinuities, 
since the functions encountered in engineering are more well 
behaved than the ones that mathematicians can provide as 
counter-examples to this presumption. 


