

"Programming" here means "Planning"

Graphical Representation

In *two* dimensions, the graph of a linear equation is a *line*, and the graph of a linear inequality is a *half-space* (*including the line*).

To draw the graph of a linear inequality, first draw the graph of the equation, and then decide which side is the correct half-space by testing whether (0,0) is feasible.

In *three* dimensions, the graph of a linear equation is a *plane*.

In *n* dimensions, the graph of a linear equation is a *hyperplane*.

Exercise

Graph the linear inequality:

 $X_1 - X_2 \le 2$

(Shade the region representing points which are feasible in **both** inequalities.)

(exercise, continued)

Graph the solutions of the pair of linear inequalities:

 $\begin{cases} X_1 - X_2 \le 2\\ X_1 + 3X_2 \ge 6 \end{cases}$

(Shade the region representing points which are feasible in **both** inequalities.) *linear programming (LP):* an optimization problem for which

- we *maximize* or *minimize* a linear function of the *decision variables* (this function is called the *objective* function)
- the values of the decision variables must satisfy a set of *constraints*, each consisting of a linear equation or linear inequality
- a sign restriction, i.e., usually *nonnegativity* $(x_i \ge 0)$ but perhaps *nonpositivity*

 $(x_i \leq 0)$, may be associated with each decision variable.

example:

maximize
$$2x_1 + x_2$$

subject to $3x_1 - x_2 \ge 6$
 $2x_1 + 3x_2 \le 12$
 $x_1 \ge 0, x_2 \ge 0$

Graphical Representation

Each point in the shaded *feasible region* satisfies *all four* inequality constraints (including nonnegativity) and represents a possible solution of the problem.
The *optimal solution* is the feasible solution for which the objective function is largest.

By graphing the linear equations

 $2X_1 + X_2 = 0$, $2X_1 + X_2 = 4$, $2X_1 + X_2 = 12$, etc.,

we see that the *slope remains the same*, but the line is *shifted to the right*.

How far to the right can the line be shifted = 12 = etc. while still including a feasible solution of $2X_1 + X_2 = 12$ the set of inequalities?

The optimal solution is the corner farthest to the right, $(X_1, X_2) = (6, 0)$.

In fact, an optimal solution of an LP problem can always be found at a corner point!

Example:

- A manufacturer can make two products: P and Q.
- Each product requires processing time on each of four machines: A, B, C, and D.
- Each machine is available 24 hours per day = 1440 minutes per day.
- The profit per unit of products P and Q are \$45 and \$60, respectively.
- Maximum demand for products P and Q are 100/day and 40/day, respectively.

	Unit Processing	Time (minutes)	
Machine \Product:	Р	Q	Available (min.)
A	20	10	1440
В	12	28	1440
С	15	6	1440
D	10	15	1440
Profit/unit	45	60	

How much of each product should be manufactured each day in order to maximize profits?

Define the decision variables P = number of units/day of product PQ = number of units/day of product QObjective: Maximize 45P + 60Q (\$/day) Constraints: do not exceed the available processing time on each machine: $20P + 10Q \le 1440$ $12P + 28Q \le 1440$ $15P + 6Q \le 1440$ $10P + 15Q \le 1440$ do not produce more than the demand for the products: $P \le 100$ $Q \leq 40$ a negative quantity of product is meaningless: $P \ge 0, Q \ge 0$

The maximum profit is obtained at the corner point (P,Q) = (58.9, 26.2)

Note: I clearly erred in drawing the isoquant line for the profit!

The **graphical method** for solving an LP problem is useless for problems with more than 2 (possibly 3) decision variables...

Problems occurring in "the real world" may involve a million decision variables and thousands of constraints!

We will study computational methods for solving linear programming problems.

LINGO is a software package for solving LP problems....

(by default, variables are assumed to be nonnegative.)

SOLUTION:

Global optimal solution found at Objective value:	t step: 2 4221.818	
Variable	Value 58,90909	Reduced Cost
Q	26.18182	0.0000000
Row	Slack or Surplus	Dual Price
1	4221.818	1.000000
2	0.000000	1.227273
3	0.000000	1.704545
4	399.2727	0.000000
5	458.1818	0.000000
6	41.09091	0.000000
7	13.81818	0.000000

That is, the manufacturer will maximize profits by producing 58.9 units of P and 26.18 units of Q each day (assuming fractional units are possible). This plan will yield a profit of \$4221.818/day.

Row	Slack or Surplus	Dual Price
1	4221.818	1.000000
2	0.000000	1.227273
3	0.000000	1.704545
4	399.2727	0.000000
5	458.1818	0.000000
6	41.09091	0.000000
7	13.81818	0.000000

This plan will use all of the available time on machines A and B, i.e.,

$$S_A = S_B = 0$$

but unused time on machines C & D will be 399.27 and 458.18, respectively,

that is, $S_C = 399.2727$ and $S_D = 458.1818$.

Computational Methods for Solving LPs

It is more convenient to work with linear **equations** rather than linear inequalities.

Define "slack" variables $S_A, S_B, S_C \& S_D$ to be the **unused** processing time on machines A, B, C & D, respectively.

Then, for example, the inequality constraint for machine A is equivalent to the linear equation and nonnegativity restriction:

 $20P + 10Q \le 1440$ \iff $20P + 10Q + S_A = 1440 \& S_A \ge 0$

Thus we obtain the **system of equations** (& simple bounds on the variables):

		(20P+10Q+	S_A	=1440
$(20P + 10Q \le 1440)$		12P + 28Q	$+S_B$	=1440
$12P + 28Q \le 1440$		15P + 6Q	$+S_{C}$	=1440
$15P + 6Q \le 1440$	\Leftrightarrow	10P + 15Q	+S	$_{D} = 1440$
$10P + 15Q \le 1440$		$0 \le P \le 100,$	$0 \le Q \le 40$,
		$S_A \ge 0, S_B \ge$	$0, S_C \ge 0, S_C$	$_{D} \geq 0$

Next we will review computational methods for solving systems of linear equations!