Linear Programming Models

"Programming" here means "Planning"

LP Modeling

Graphical iepresentainon

In two dimensions, the graph of a linear equation is a line, and the graph of a linear inequality is a half-space
(including the line).
To draw the graph of a linear inequality, first
draw the graph of the equation, and then decide which side is the correct half-space by testing whether $(0,0)$ is feasible.

In three dimensions, the graph of a linear equation is a plane.
In \boldsymbol{n} dimensions, the graph of a linear equation is a hyperplane.

Exercise

Graph the linear inequality:
$X_{1}-X_{2} \leq 2$
(Shade the region representing points
which are feasible in both inequalities.)
(exercise, continued)

Graph the solutions of the pair of
linear inequalities:
$\left\{\begin{array}{l}X_{1}-X_{2} \leq 2 \\ X_{1}+3 X_{2} \geq 6\end{array}\right.$
(Shade the region representing points which are feasible in both inequalities.)
linear programming (LP): an optimization problem for which

- we maximize or minimize a linear function of the decision variables (this function is called the objective function)
- the values of the decision variables must satisfy a set of constraints, each consisting of a linear equation or linear inequality
- a sign restriction, i.e., usually nonnegativity $\left(x_{i} \geq 0\right)$ but perhaps nonpositivity $\left(x_{i} \leq 0\right)$, may be associated with each decision variable.

```
example:
            maximize 2x}+\mp@subsup{x}{2}{
            subject to }3\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{}\geq
\[
\begin{array}{r}
2 x_{1}+3 x_{2} \leq 12 \\
x_{1} \geq 0, x_{2} \geq 0
\end{array}
\]
```


Graphical Representation

maximize $2 x_{1}+x_{2}$
subject to $3 x_{1}-x_{2} \geq 6$

$$
\begin{array}{r}
2 x_{1}+3 x_{2} \leq 12 \\
x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Each point in the shaded feasible region satisfies all four inequality constraints (including nonnegativity) and represents a possible solution of the problem.

The optimal solution is the feasible solution for which the objective function is largest.

By graphing the linear equations

$$
2 X_{1}+X_{2}=0,2 X_{1}+X_{2}=4,2 X_{1}+X_{2}=12, \text { etc. }
$$

we see that the slope remains the same,
 but the line is shifted to the right.

How far to the right can the line be shifted while still including a feasible solution of the set of inequalities?

The optimal solution is the corner farthest to the right, $\left(X_{1}, X_{2}\right)=(6,0)$.

In fact, an optimal solution of an LP problem can always be found at a corner point!

Example:

- A manufacturer can make two products: P and Q.
- Each product requires processing time on each of four machines: A, B, C, and D.
- Each machine is available 24 hours per day $=1440$ minutes per day.
- The profit per unit of products P and Q are $\$ 45$ and $\$ 60$, respectively.
- Maximum demand for products P and Q are 100/day and 40/day, respectively.

	Unit Processing	Time (minutes)	
Machine \backslash Product:	P	Q	Available (min.)
A	20	10	1440
B	12	28	1440
C	15	6	1440
D	10	15	1440
Profit/unit	45	60	

How much of each product should be manufactured each day in order to maximize profits?

Define the decision variables
$\mathrm{P}=$ number of units/day of product P
$\mathrm{Q}=$ number of units/day of product Q
Objective: Maximize $45 P+60 Q$ (\$/day)
Constraints: do not exceed the available processing time on each machine:

$$
\begin{aligned}
20 P+10 Q & \leq 1440 \\
12 P+28 Q & \leq 1440 \\
15 P+6 Q & \leq 1440 \\
10 P+15 Q & \leq 1440
\end{aligned}
$$

do not produce more than the demand for the products:

$$
P \leq 100
$$

$$
Q \leq 40
$$

a negative quantity of product is meaningless:

$$
P \geq 0, Q \geq 0
$$

The maximum profit is obtained at the corner point $(P, Q)=(58.9,26.2)$

Note: I clearly erred in drawing the isoquant line for the profit!

The graphical method for solving an LP problem is useless for problems with more than 2 (possibly 3) decision variables...

Problems occurring in "the real world" may involve

a million decision variables and
thousands of constraints!

We will study computational methods for solving linear programming problems.

LINGO Model－LINGO1
Ready

$$
\begin{aligned}
& \text { Max= 4.5 } \mathrm{F}+6 \mathrm{O} \text { \# } \mathrm{Z} \\
& 2 口 * P+1 口 * Q<1440 ; \\
& 12 * \mathrm{P}+2 \mathrm{~B} * \mathrm{Q}<144 \mathrm{O} \text {; } \\
& 15 * P+6 * Q<=1440 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P<=100; } \\
& \text { Q< }=40 \text { : }
\end{aligned}
$$

LINGO is a software package for solving LP problems．．．．
（by default， variables are assumed to be nonnegative．）

SOLUTION:

Global optimal solution Objective value:	ep: 4221.8	
	Value	Reduced Cost
	58.90909	0.0000000
	26.18182	0.0000000
	Slack or Surplus	Dual Price
	4221.818	1.000000
	0.0000000	1.227273
	0.0000000	1.704545
	399.2727	0.0000000
	458.1818	0.0000000
	41.09091	0.0000000
	13.81818	0.0000000

LP Modeling

That is, the manufacturer will maximize profits by producing 58.9 units of P and 26.18 units of Q each day (assuming fractional units are possible).

This plan will yield a profit of \$4221.818/day.

Row	Slack or Surplus	Dual Price
1	4221.818	1.000000
2	0.0000000	1.227273
3	0.0000000	1.704545
4	399.2727	0.0000000
	5	458.1818
6	41.09091	0.0000000
	7	13.81818

This plan will use all of the available time on machines A and B, i.e.,

$$
S_{A}=S_{B}=0
$$

but unused time on machines C \& D will be 399.27 and 458.18, respectively,
that is, $S_{C}=399.2727$ and $S_{D}=458.1818$.

Computational Methods for Solving LPs

It is more convenient to work with linear equations rather than linear inequalities.

Define "slack" variables $S_{A}, S_{B}, S_{C} \& S_{D}$ to be the unused processing time on machines $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$, respectively.

Then, for example, the inequality constraint for machine A is equivalent to the linear equation and nonnegativity restriction:

$$
20 P+10 Q \leq 1440 \quad \Leftrightarrow \quad 20 P+10 Q+S_{A}=1440 \& S_{A} \geq 0
$$

Thus we obtain the system of equations (\& simple bounds on the variables):

$$
\left\{\begin{array} { r }
{ 2 0 P + 1 0 Q \leq 1 4 4 0 } \\
{ 1 2 P + 2 8 Q \leq 1 4 4 0 } \\
{ 1 5 P + 6 Q \leq 1 4 4 0 } \\
{ 1 0 P + 1 5 Q \leq 1 4 4 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
20 P+10 Q+S_{A} & =1440 \\
12 P+28 Q+S_{B} & =1440 \\
15 P+6 Q \quad+S_{C}=1440 \\
10 P+15 Q \quad+S_{D}=1440 \\
0 \leq P \leq 100,0 \leq Q \leq 40, \\
S_{A} \geq 0, S_{B} \geq 0, S_{C} \geq 0, S_{D} \geq 0
\end{array}\right.\right.
$$

Next we will review computational methods for solving systems of linear equations!

