Models

“Programming” here means ““Planning™



linear function

examples

f (X, %00 %)

2X,+OX, + X, +1
X _3X3

n
=, + Zci X,
i=1

=C, +CX +C,X, +--++C X

linear inequality

examples

m=°l|ﬂl|=l|qwu

LP Modeling




Graphical Representation

In two dimensions, the graph of a linear

X
: equation is a line, and the graph of a
3 . : _
linear inequality is a half-space
> (including the line).
2x +3x, 212
L To draw the graph of a linear inequality, first
5 |1 2| N [ Xy draw the graph of the equation, and then
1 decide which side is the correct half-space by
2x +3x, <127 .\

2y +3x, =12 testing whether (0,0) is feasible.

In three dimensions, the graph of a linear equation is a plane.

In n dimensions, the graph of a linear equation is a hyperplane.
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Exercise
X Graph the linear inequality:

X, —X,<2
(Shade the region representing points

which are feasible in both

1 2 3 4 5 6 7 Inequalities.)
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(exercise, continued)

LP Modeling

Graph the solutions of the pair of
linear inequalities:
{Xl -X,<2

X, +3X,>6
(Shade the region representing
points which are feasible in both

Inequalities.)



linear programming (LP): an optimization problem for which

e We maximize or minimize a linear function of the decision variables (this function
Is called the objective function)

e the values of the decision variables must satisfy a set of constraints, each

consisting of a linear equation or linear inequality
e a sign restriction, i.e., usually nonnegativity (xi > O) but perhaps nonpositivity

(x; <0), may be associated with each decision variable.

example:
maximize 2x, + X,
subject to 3x, —X, >6
2X, +3X, <12
X, =20,x,=20
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Graphical Representation

maximize 2x, + X,
subject to 3Xx,—X, >6
2X, +3X, <12

X, 20,x,20

X5 '-|:|*

-

o]

feasible
region

2 x, 20 5

X1

Each point in the shaded feasible region satisfies all four inequality constraints

(including nonnegativity) and represents a possible solution of the problem.

The optimal solution is the feasible solution for which the objective function is largest.
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By graphing the linear equations
2X, +X,=0, 2X, + X, =4, 2X,+ X, =12, etc.,
we see that the slope remains the same,

but the line is shifted to the right.

,4 How far to the right can the line be shifted
\; w0\ =12\ =ete. While still including a feasible solution of
\(IER Exl +4:=12 the set of inequalities?
2X, +X,=7.6363
2%, ;33{ SA The optimal solution is the corner farthest

to the right, (X, X,)=(6,0).

In fact, an optimal solution of an LP problem can always be found at a corner point!

LP Modeling



Example:
e A manufacturer can make two products: P and Q.
e Each product requires processing time on each of four machines: A, B, C, and D.
e Each machine is available 24 hours per day = 1440 minutes per day.
e The profit per unit of products P and Q are $45 and $60, respectively.
e Maximum demand for products P and Q are 100/day and 40/day, respectively.

Unit Processing | Time (minutes)
Machine \Product: P Q Available (min.)
A 20 10 1440
B 12 28 1440
C 15 6 1440
D 10 15 1440
Profit/unit 45 60

How much of each product should be manufactured each day in order to
maximize profits?
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Define the decision variables
P = number of units/day of product P
Q = number of units/day of product Q

Objective: Maximize 45P +60Q ($/day)

Constraints: do not exceed the available processing time on each machine:
20P +10Q <1440

12P + 28Q <1440
15P + 6Q <1440

10P +15Q <1440

do not produce more than the demand for the products:
P <100

Q <40

a negative quantity of product is meaningless:
P>0,Q0>0
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The maximum profit is obtained at
the corner point (P,Q)=(58.9,26.2)

profit line

demand for P

™\
Note: | clearly erred in drawing the isoquant line for
Blo% the profit!
T
. demand for Q
N I I | P
feasible 0 200
region \P% C D
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The graphical method for solving an LP problem is useless for problems with more

than 2 (possibly 3) decision variables...

Problems occurring in “the real world” may involve
a million decision variables and

thousands of constraints!

We will study computational methods for solving linear programming problems.
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Max= 45*P+a0%0;

Aa0*P+10*Q<=1440;
la*P+ag*0<=1440;
15*P+a*0<=1440;

10*P+15*0<=1440;
P<=100;

J<=40;

Feady

LP Modeling

LINGO is a software
package for solving LP
problems....

(by default,
variables are
assumed to be

nonnegative.)



SOLUTION:

Global optimal solution found at step: 2

Objective value:

Variable

4221 .818

Value
58.90909
26.18182

Slack or Surplus
4221.818
0.0000000
0.0000000
399.2727
458.1818
41.09091
13.81818

Reduced Cost
0.0000000
0.0000000

Dual Price
1.000000
1.227273
1.704545

0.0000000
0.0000000
0.0000000
0.0000000
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That is, the manufacturer will maximize profits by producing 58.9 units of P and 26.18
units of Q each day (assuming fractional units are possible).
This plan will yield a profit of $4221.818/day.

Row Slack or Surplus Dual Price
1 4221.818 1.000000
2 0.0000000 1.227273
3 0.0000000 1.704545
4 399.2727 0.0000000
5 458.1818 0.0000000
6 41.09091 0.0000000
7 13.81818 0.0000000

This plan will use all of the available time on machines A and B, i.e.,
S,=5;=0
but unused time on machines C & D will be 399.27 and 458.18, respectively,
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that is, S, =399.2727 and S, =458.1818.
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Computational Methods for Solving LPs

It is more convenient to work with linear equations
rather than linear inequalities.

Define “slack” variables S,,S;,S. &S, to be the

unused processing time on machines A, B, C & D,
respectively.

Then, for example, the inequality constraint for machine A
is equivalent to the linear equation and nonnegativity

restriction:
20P +10Q <1440 S 20P+10Q+S, =1440 &S, >0

LP Modeling




Thus we obtain the system of equations (& simple bounds on the
variables):

(20P +10Q +S, =1440
(20P +10Q <1440 12P+28Q +S, =1440
12P +28Q <1440 15P +6Q +S.  =1440
< 15P +6Q <1440 = iop +15Q +S, =1440
| 10P +15Q <1440 0< P <100, 0<Q <40,
S,20,5,20,S. 20,5, >0

Next we will review computational methods for solving
systems of linear equations!
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