Stresses in Pressurized Cylinders

Cylindrical pressure vessels, hydraulic cylinders, shafts with components mounted on (gears, pulleys, and bearings), gun barrels, pipes carrying fluids at high pressure,..... develop tangential, longitudinal, and radial stresses.

Stress element
Longitudinal stress
$\sigma_{l} \quad$ (closed ends)

Tangential stress $\quad \sigma_{\theta}$
Hoop stress

Radial stress

A pressurized cylinder is considered a thin-walled vessel if the wall thickness is less than one-twentieth of the radius.

$$
\frac{t}{r}<1 / 20 \longrightarrow \text { Thin-walled pressure vessel }
$$

Stresses in a Thin-Walled Pressurized Cylinders

In a thin-walled pressurized cylinder the radial stress is much smaller than the tangential stress and can be neglected

Longitudinal stress
$\Sigma F_{y}=0$
$\left(\sigma_{l}\right) \pi / 4\left[\left(d_{o}\right)^{2}-\left(d_{i}\right)^{2}\right]=(p) \pi / 4\left(d_{i}\right)^{2}$
$\left(\sigma_{l}\right)\left[\left(d_{i}+2 t\right)^{2}-\left(d_{i}\right)^{2}\right]=(p)\left(d_{i}\right)^{2}$
$4 t^{2}$ is very small,

$$
\left(\sigma_{l}\right)\left(4 d_{i} t\right)=(p)\left(d_{i}\right)^{2}
$$

$$
\sigma_{l}=\frac{p d_{i}}{2 t} \quad \sigma_{l}=\frac{p\left(d_{i}+t\right)}{4 t}
$$

Longitudinal stress, σ_{l}

Max. longitudinal stress

Stresses in a Thin-Walled Pressurized Cylinders

Tangential (hoop) stress
$\sum F_{x}=0$
$2\left(\sigma_{\theta}\right) t$ (length) $=(p)\left(d_{i}\right)$ (length)

$$
\sigma_{\theta}=\frac{p d_{i}}{2 t} \quad \text { Max. Hoop stress }
$$

$$
\sigma_{l}=1 / 2 \sigma_{\theta}
$$

Hoop stress

Stresses in a Thick-Walled Pressurized Cylinders

In case of thick-walled pressurized cylinders, the radial stress, σ_{r}, cannot be neglected.

Assumption - longitudinal elongation is constant around the plane of cross section, there is very little warping of the cross section, $\varepsilon_{l}=$ constant
$l=$ length of cylinder

$$
\Sigma F=0
$$

$2\left(\sigma_{\theta}\right)(d r)(l)+\sigma_{r}(2 r l)-\left(\sigma_{r}+d \sigma_{r}\right)[2(r+d r) l]=0$
$\left(d \sigma_{r}\right)(d r)$ is very small compared to other terms ≈ 0

$$
\begin{equation*}
\sigma_{\theta}-\sigma_{r}-r \frac{d \sigma_{r}}{d r}=0 \tag{1}
\end{equation*}
$$

Stresses in a Thick-Walled Pressurized Cylinders

Deformation in the longitudinal direction

$$
\begin{align*}
\mathcal{E}_{l}=-\mu \frac{\sigma_{\theta}}{\mathrm{E}}-\mu \frac{\sigma_{r}}{\mathrm{E}} \longrightarrow & \sigma_{\theta}+\sigma_{r}=-\frac{\varepsilon_{l} \mathrm{E}}{\mu}=2 \mathrm{C}_{1} \tag{2}\\
& \sigma_{\theta}-\sigma_{r}-r \frac{d \sigma_{r}}{d r}=0 \tag{1}
\end{align*}
$$

Subtract equation (1) from (2), Consider,

$$
\sigma_{r}+\sigma_{r}+r \frac{d \sigma_{r}}{d r}=2 \mathrm{C}_{1} \quad \frac{d\left(\sigma_{r} r^{2}\right)}{d r}=r^{2} \frac{d \sigma_{r}}{d r}+2 r \sigma_{r}
$$

Multiply the above equation by r

$$
\begin{gathered}
2 r \sigma_{r}+r^{2} \frac{d \sigma_{r}}{d r}=2 r \mathrm{C}_{1} \longrightarrow \frac{d\left(\sigma_{r} r^{2}\right)}{d r}=2 r \mathrm{C}_{1} \\
\sigma_{r} r^{2}=r^{2} \mathrm{C}_{1}+\mathrm{C}_{2} \\
\sigma_{r}=\mathrm{C}_{1}+\frac{\mathrm{C}_{2}}{r^{2}} \quad \mathrm{\sigma}_{\theta}=\mathrm{C}_{1}-\frac{\mathrm{C}_{2}}{r^{2}}
\end{gathered}
$$

Stresses in a Thick-Walled Pressurized Cylinders

$$
\begin{aligned}
& \text { Boundary conditions } \begin{cases}\sigma_{r}=-p_{i} \text { at } r=r_{i} \\
\sigma_{r}=-p_{o} \text { at } r=r_{o}\end{cases} \\
& \sigma_{\theta}=\frac{p_{i} r_{i}^{2}-p_{o} r_{o}^{2}-r_{i}^{2} r_{o}^{2}\left(p_{o}-p_{i}\right) / r^{2}}{r_{o}^{2}-r_{i}^{2}} \quad \text { Hoop stress } \\
& \sigma_{r}=\frac{p_{i} r_{i}^{2}-p_{o} r_{o}^{2}+r_{i}^{2} r_{o}^{2}\left(p_{o}-p_{i}\right) / r^{2}}{r_{o}^{2}-r_{i}^{2}} \quad \text { Radial stress } \\
& \sigma_{l}=\frac{p_{i} r_{i}^{2}-p_{o} r_{o}^{2}}{r_{o}^{2}-r_{i}^{2}}
\end{aligned} \quad \text { Longitudinal stress }
$$

Stresses in a Thick-Walled Pressurized Cylinders

Special case, p_{o} (external pressure) $=0$

$$
\sigma_{\theta}=\frac{p_{i} r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}}\left(1+\frac{r_{o}^{2}}{r^{2}}\right) \quad \sigma_{r}=\frac{p_{i} r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}}\left(1-\frac{r_{o}^{2}}{r^{2}}\right)
$$

Hoop stress distribution, maximum at the inner surface

Radial stress distribution, maximum at the inner surface

Press and Shrink Fits

$d_{\mathrm{s}}($ shaft $)>d_{\mathrm{h}}$ (hub)
p (contact pressure) = pressure at the outer surface of the inner member or pressure at the inner surface of the outer member.

Inner member

Consider the inner member at the interface
Outer member
$\sigma_{i \theta}=\frac{p_{i} r_{i}^{2}-p_{o} r_{o}^{2}-r_{i}^{2} r_{o}^{2}\left(p_{o}-p_{i}\right) / r^{2}}{r_{o}^{2}-r_{i}^{2}}$
$\left\{\begin{array}{l}\sigma_{i \theta}=\frac{-p_{o} R^{2}-r_{i}^{2} R^{2} p / R^{2}}{R^{2}-r_{i}^{2}}=-p \frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}\end{array}\right.$

$$
\begin{aligned}
r_{i} & =r_{i} \\
r_{o} & =R
\end{aligned}
$$

Press and Shrink Fits

Consider the outer member at the interface

$$
\begin{cases}\sigma_{o \theta}=p \frac{R^{2}+r_{o}^{2}}{r_{o}^{2}-R^{2}} & r_{i}=R \\ \sigma_{o r}=-p & \end{cases}
$$

$$
p_{\mathrm{i}}=p
$$

$\delta_{0}=$ increase in the inner radius of the outer member $\delta_{\mathrm{i}}=$ decrease in the outer radius of the inner member

Tangential strain at the inner radius of the outer member

$$
\begin{aligned}
& \mathcal{E}_{o t}=\frac{\sigma_{o \theta}}{\mathrm{E}_{0}}-\mu_{0} \frac{\sigma_{o r}}{\mathrm{E}_{0}} \\
& \mathcal{E}_{o t}=\frac{\delta_{0}}{R}
\end{aligned}
$$

Press and Shrink Fits

Tangential strain at the outer radius of the inner member

$$
\begin{aligned}
& \varepsilon_{i t}=\frac{\sigma_{i \theta}}{\mathrm{E}_{\mathrm{i}}}-\mu_{\mathrm{i}} \frac{\sigma_{i r}}{\mathrm{E}_{\mathrm{i}}} \longrightarrow \delta_{\mathrm{i}}=-\frac{R p}{\mathrm{E}_{\mathrm{i}}}\left(\frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}+\mu_{\mathrm{i}}\right) \\
& \varepsilon_{i t}=-\frac{\delta_{\mathrm{i}}}{R}
\end{aligned}
$$

Radial interference, $\delta=\delta_{0}-\delta_{\mathrm{i}}$

$$
\delta=\frac{R p}{\mathrm{E}_{\mathrm{o}}}\left(\frac{R^{2}+r_{o}^{2}}{r_{o}^{2}-R^{2}}+\mu_{\mathrm{o}}\right)+\frac{R p}{\mathrm{E}_{\mathrm{i}}}\left(\frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}+\mu_{\mathrm{i}}\right)
$$

If both members are made of the same material then, $\mathbf{E}=\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{i}}$ and $\mu=\mu_{\mathrm{o}}=\mu_{\mathrm{i}}$

$$
\boldsymbol{p}=\frac{\mathrm{E} \delta}{R}\left[\frac{\left(r_{o}^{2}-R^{2}\right)\left(R^{2}-r_{i}^{2}\right)}{2 R^{2}\left(r_{o}^{2}-r_{i}^{2}\right)}\right]
$$

