	Prod Time	per Batch, h	Prod Time Avail, h
Plant	Pro	duct	
	1	2	
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	30 G	15 G	

Data for Comet Trading Co. problem

The Linear Programming Model

Data Needed:

	Resource Usage per unit Activity		lsage tivity	
Resource	1		n	Amount Available
1	a 11		a_{ln}	bı
:	:		:	:
m	a_{m1}		a _{mn}	b _m
Per unit contribution	c_1		c _n	

Notation:	m n x _j	resources activities level of activity j
	Z c _j b _i	overall measure of performance

Standard Form:

Other Forms:

- 1. Minimizing rather than maximizing the objective function
- 2. Constraints with a greater-than-or-equal-to inequality
- 3. Constraints in equation form
- 4. Unrestricted decision variables

	solution feasible solution infeasible solution feasible region no feasible solutions optimal solution most favorable value multiple optimal solutions no optimal solutions unbounded Z corner-point feasible (CPF) solution
Theorem:	Any LP with a bounded feasible region with feasible solutions must possess CPF solutions and at least one optimal solution.

Assumptions of Linear Programming:

- 1. Proportionality assumption: The contribution of each activity to the value of the objective function is proportional to the level of that activity. Similarly, the contribution of each activity to the LHS of each functional constraint is proportional to the level of the activity.
- 2. Additivity assumption: Every function is the sum of the individual contributions of the respective activities.
- 3. Divisibility assumption: Decision variables are allowed to have any values, including noninteger values, that satisfy the functional and nonnegativity constraints. (i.e. activities can run at fractional levels).
- 4. Certainty assumption: The value assigned to each parameter is assumed to be a known constant.