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Introduction

¢ There are numerous applications that require
the use of containers for storage or
transmission of gasses and fluids under high
pressure.

& Two types of pressure vessels are thin-walled
and thick-walled.

& The distinctions is based on the Hoop stress
over the thickness.
e Constant — thin-walled, r/t>10
e Not constant — thick walled



Thin-Walled Pressure Vessels

& The most commonly used types of thin-
walled pressure vessels are cylindrical
and spherical.

& We will develop the stress equations for
the case of cylindrical thin-walled
pressure vessels and then extrapolate
to spherical.



Cylindrical Vessel

& Consider the thin-walled
cylindrical vessel shown, which is

subjected to internal fluid pressure R
P, and assumed to have closed & 7 A

ends.

& A result of this pressure, the
circumference of the vessel will
expand, causing tensile stress o, .
tangent to the circumference o
called Hoop Stress.




Cylindrical Vessel

& Also, because of this internal
pressure, longitudinal fibers in
the vessel will tend to stretch,
creating a tensile stress o, e N
called longitudinal or axial
stress.

& These stresses are shown on a
plane stress element of the
outside surface.

e One set of the elements planes are @
parallel to the axis of the cylinder
and the other set perpendicular to
this axis.
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Cylindrical Vessel

& These stresses are applied to the
surface of the vessel, and therefore do
not experience shear stress.

& If the stress element were taken on the
iInner surface of the cylinder, it would be
treated as a 3 dimensional element.



Cylindrical Vessel

& Consider the FBD of a small dy
portion of the cylinder as /
shown in 8-1b.

¢ We have sliced the cylinder
Into two halves along the x-z
plane, then isolated a small
segment from one of the two 5 ’
halves a distance dy apart. (b)
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Cylindrical Vessel

¢ The FBD is In
equilibrium in the x- dy
direction )

e Under the action of
the pressure p

e Under the action of
the Hoop stress o, =

e Both uniformly
distributed over tdy.
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(b)



Cylindrical Vessel

& The total force produced in the x
direction by the internal fluid pressure dy
P, Is the product of p and the o)
projected area 2rdy.

& The resultant force produced by the
Hoop stress o4, Is the product of the
o, and the area tdy.

¢ Note there are two o,tdy acting on the
FBD, one on the top and one on the
bottom.
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(b)
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Cylindrical Vessel

¢ Then:

> F, =0= 20,(tdy)- p(2rdy)=0

& Solving for the Hoop stress yields:

- r
o, = tangential stress = Pr

t



Cylindrical Vessel

¢ The longitudinal
stress 6, Or 6, IS

then obtained from

the FBD of 8-1c.

& This FBD drawn by
cutting the cylinder
Into two parts
perpendicular to its
axis and isolating ©
one side.




Cylindrical Vessel

& Is in equilibrium In
the y direction under
the action of the
fluid pressure p and

stress oF]

e Which is assumed
uniformly distributed
over the annular o
area.
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Cylindrical Vessel

& Then: (mean radius=r (inner radius) (thin walled))
Y F,=0=0,(27rt)- p(yzrz): 0

& Solving for the axial stress Is:

Pr
2t

O-y:GZZ
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Cylindrical Vessel

& This says that the longitudinal stress is
exactly ¥2 of the circumferential stress.

& These equations were derived on the basis of
equilibrium and do not depend on the
material being linearly elastic.

& The stresses calculated apply only away from
the cylinder ends.

e The constraint imposed by the cylinder ends
complicates the stress state.
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Cylindrical Vessel

& Note that the pressure p is the the gage
pressure

e Difference between the total internal pressure and
the external atmospheric pressure.

e If the internal and external pressure are the same,

no stresses are developed in the wall of the
vessel.

e Only the excess of internal pressure over external
pressure has any effect on these stresses.
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Spherical Vessels

& A sphere Is the theoretically ideal shape
for a vessel that resists internal
pressure.

e Think about a soap bubble.

& To determine the stresses in a spherical
vessel, it i1s cut on the vertical axis and
Isolated from the other side.
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Spherical Vessels

& Because of the symmetry of the
vessel and its loadings figure b, the
tensile stress is uniform around the

circumference.

& \We also know, because it is thin
walled, that the stress is uniformly
distributed across the thickness.

e The accuracy becomes greater as the wall
becomes thinner, and worse as the wall

becomes thicker.

(a)
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Spherical Vessels

¢ Equilibrium of forces in the horizontal
direction yields equation 3. _pr
O, =——
2t
& It Is obvious from symmetry of a spherical
shell that we would get the same equation for
tensile stresses when the sphere is cut
through the center in any direction.
The wall of a pressurized spherical vessel is

subjected to uniform tensile stresses in all
directions.
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Spherical Vessels

& Stresses that act tangentially to the
curved surface of a shell are called
Membrane Stresses.

& They are called this because these are
the only stresses that exist in true
membranes, like soap films.



Comments

& Pressure vessels usually have openings in
their walls (inlet and outlets for the fluid).

& They have fittings and supports that exert
forces on the shell.

& These features result in non-uniformities in
the stress distribution (stress concentrations).

e These stress concentrations cannot be analyzed
with the elementary formulas we have learned.

e Other factors include corrosion, impact,
temperature, etc.
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Limitations on Thin-shell

theory

& r/tratio > 10

& Internal pressure>external pressure (no
iInward buckling)

& Formulas apply only to the effects of internal
oressure (no external loads, etc)

& Formulas valid throughout the wall of the
vessel except near the points of stress
concentrations.
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Combined Loadings

¢ We have analyzed structural members
subjected to a single type of loading.
e Axially loaded bars
e Shafts in torsion
e Beams in bending
e Pressure vessels

& For each type of loading we developed
methods for finding stresses, strains, and
deformations.



Combined Loadings

& In systems the members are required to
resist more than one kind of loading.

e Bending moment & axial forces
e Pressure vessel supported as a beam
e Shaft in torsion with a bending load

& These are called Combined Loadings.

& They occur In machines, buildings,
vehicles, tools,etc.



Combined Loadings

& Structural members subjected to combined
loadings can be analyzed by superposition.

& This is possible only under certain conditions,
such as:

e No Interaction between various loads (the stresses
& strains due to one load must not be affected by
the presence of the other loads).

e All rules as applied to loadings when equations
were derived.
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Combined Loadings
Method of Analysis

Internal Loading

Average Normal Stress
Normal Force

Shear Force

Bending Moment

Torsional Moment
Thin-Walled Pressure Vessels
Superposition

¢ & ¢ ¢ ¢ ¢ @ @



EXAMPLE 8-2

A force of 150 Ib is applied to the edge of the member shown in Fig.
8-3a. Neglect the weight of the member and determine the state of
stress at points B and C.

(a)
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150 Ib

J—A

= /‘—)‘"C

|

750 Ib-in.

150 1b
(b)

SOLUTION

Internal Loadings. The member is sectioned through B and C. For

equilibrium at the section there must be an axial force of 150 Ib acting
through the centroid and a bending moment of 750 Ib - in. about the
centroidal or principal axis, Fig. 8-3b.
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Stress Components.

NorwvaL Force. The uniform normal-stress distribution due to the
normal force is shown in Fig. 8-3c. Here
& 150 Ib

o=—

A (10in.)(4 in.)

= 3.75 psi

D |
ﬁ C
— 15 psi
& - B
SRS o, > = 7.5 psi
BTy 375 psi b ’"% ' B Y . pst
375 psi -1 psi 14 - B 7.5 psi 5 L1 15 psi )
. Sl ~L-- . =4 |
: 11.25 psi 11.25 psi - x
Normal Force (10 in.—x)
© Bending Moment Combined Loading
() @)
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Stress Components.

Benping Moment. The normal-stress distribution due to the
bending moment is shown in Fig. 8-3d. The maximum stress is
Mc 750 1b - in.(5 in.)

max = =112 Si
T T T G (4 in)(10 i)’ £

D |
ﬁ C
— 15 psi
& - B
SRS o, = = 7.5 psi
P LIRS 75 b ? ’"% | A ~{ i =
375 psi -1 psi 14 - B 7.5 psi 5 L1 15 psi )
. Sl ~L-- . =4 |
: 11.25 psi 11.25 psi - x
Normal Force (10 in.—x)
© Bending Moment Combined Loading
(d) (e)
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Stress Components.

Superposition. If the above normal-stress distributions are added
algebraically, the resultant stress distribution is shown in Fig. 8-3e.
Although it is not needed here, the location of the line of zero stress

can be determined by proportional triangles; i.e.,
75psi 15 psi
x (10 in. — x)
x = 3.33 in.
Elements of material at B and C are subjected only to normal
or uniaxial stress as shown in Fig. 8-3f and 8-3g. Hence,

op=T75psi (tension) Ans.
oc = 15 psi  (compression) Ans.
= ===l D
C
e - 15 psi
B
= C < € ‘" ®
B¢+ ,‘,:%r' 3 B B3l i{":{l“ ! . i) ps1
375 osi Jﬂﬂ/ B \_[ [ o 7.5 psit \1[ L 15 psi ®
: S1 ~L- . 3 b
Normal Force _ (10 in—x)
© Bending Moment Combined Loading
(d) (e)
I N — I N — I
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EXAMPLE 8-4

The member shown in Fig. 8-5a4 has a rectangular cross section.
Determine the state of stress that the loading produces at point C.

125 mm

19

50 kN/m

(a)



SOLUTION

Internal Loadings. The support reactions on the member have been
determined and are shown in Fig. 8-5b. If the left segment AC of the
member is considered, Fig. 8-5¢, the resultant internal loadings at the
section consist of a normal force, a shear force, and a bending
moment. Solving,

N =16.45 kN V =21.93kN M = 3289 kN - m

125 kN
16.45 kN —HET '

21.93 kN (b)
<« 1.5 m—+
cl Y :
16.45 kN _,];i %—MN 97.59 kN
21.93 kN

(©)
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GC:' 1.32 MPa 'TC=0 UC= 63.15 MPa
= ~ =
T Y 2=
Cl! M ClLM CL 177
- ﬁ \‘n "7// ‘
i + wy A
| W NP
) W BN
1 sl L e
Normal Force Shear Force Bending Moment
(d) (e) (f)

Stress Components.

NormaL rorce. The uniform normal-stress distribution acting over
the cross section is produced by the normal force, Fig. 8-5d. At point C,

P 16.45 kN
=< = = 1.32 MP
€T A (0.050 m)(0.250 m) a
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o= 1.32 MPa Tc=0 Oc=63.15 MPa
1 T . el
b3 ——
C | ""J: C JP& \\ C !‘:7/
I -4| l\'l '.l e 4
N | + *‘ | | + ‘//\\
< | / N \
"'I e =\ N
i | H‘ y \——\\
i z —‘:—9
Normal Force Shear Force Bending Moment
(d) (e) (f)

Stress Components.

SueAr FORCE. Here the area A” = 0, since point C is located at the
top of the member. Thus O = y’A” = 0 and for C, Fig. 8-5e, the shear
stress
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=

6c=132MPa
1
|
=
|
~
| +
"
i
o

Normal Force

(d)

Stress Components.

BENDING MOMENT.

Shear Force

(e)

neutral axis, so the normal stress at C, Fig. 8-5f, is

Ue —

Mc  (32.89 kN - m)(0.125 m)

I [ (0.050 m)(0.250)%]

Gc=63.15 MPa

—(—=
C - 4
.
3
/
“
W
\
\

JZANY

= 63.15 MPa

Bending Moment
()

Point C is located at y = ¢ = 125 mm from the
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Superposition. The shear stress is zero. Adding the normal stresses
determined above gives a compressive stress at C having a value of

— | J—64.5MPa

(2)

oc = 1.32 MPa + 63.15 MPa = 64.5 MPa Ans.

This result, acting on an element at C, is shown in Fig. 8-5g.
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EXAMPLE 8-5§

The solid rod shown in Fig. 8-6a has a radius of 0.75 in. If it is subjected
to the loading shown, determine the state of stress at point A.




SOLUTION

Internal Loadings. The rod is sectioned through point A. Using
the free-body diagram of segment A B, Fig. 8-6b, the resultant internal
loadings can be determined from the six equations of
equilibrium. Verify these results. The normal force (500 Ib) and shear
force (800 Ib) must act through the centroid of the cross section and
the bending-moment components (8000 Ib - in. and 7000 Ib - in.) are
applied about centroidal (principal) axes. In order to better “visualize”
the stress distributions due to each of these loadings, we will consider
the equal but opposite resultants acting on AC, Fig. 8-6¢.
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800 1b (14 in.) = 11200 Ib-in.  gpo b

‘& 500 1b

800 Ib (10 in.) = 8000 Ib-in.

500 1b (14 in.) = 7000 Ib-in.
800 1b

Fig. 8-6

500 1b

(b)
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7000 Ib-in.

\é 8000 Ib-in.
: 4

500 b A

~

800 Ib & :
11200 Ib-in. 0.283 ksi

, S
T+ + W + A

<k 0.604 ki O \QEI.B ksi 16.90 ksi

Normal force Shear force Bending moment  Bending moment Torsional moment
Combined loading (500 1b) (800 Ib) (8000 1b-in.) (7000 lb-in.) (11200 Ib-in.)
(c) (d) (e) () (8) (h)

Stress Components.

NormAL FOrRCE. The normal-stress distribution is shown in Fig. 8-6d.
For point A, we have

E 500 1b

)
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7000 1b-in.
N 8000 Ib-in. \
t 4
S00lb — A A + A + A
YA
80016 ¥ 11500 Ib-in : : i -
RUE 0.283 ksi 0.604 ksi 21.13 ksi 16.90 ksi
Normal force Shear force Bending moment  Bending moment Torsional moment
Combined loading (500 Ib) (800 1b) (8000 Ib-in.) (7000 Ib-in.) (11200 Ib-in.)
(c) (d) (e) () (2) (h)

Stress Components.

SueAr rorce.  The shear-stress distribution is shown in Fig. 8-6e. For

point A, Q is determined from the shaded semicircular area. Using the
table on the inside front cover, we have

1 2
O=pa = 2l [l'n((}.'YS in.) } — 02813 in’

RY s 2
sgthat 800 1b(0.2813 in®
TA — VQ = ( - 7 i ). = 604 pSl = 0.604 kSI
It [$7(0.75 in.)*]2(0.75 in.)
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7000 Ib-in.
\é; 8000 Ib-in. \
¥ i
- 5001 A it A + 4 + A
A
800 Ib : _ : . .
11200 Ib-in. 0.283 ksi 0.604 ksi 21.13 ksi 16.90 ksi
Normal force Shear force Bending moment  Bending moment Torsional moment
Combined loading (500 1b) (800 Ib) (8000 Ib-in.) (7000 Ib-in.) (11200 Ib-in.)
() (d) (e) () (2 (h)

Stress Components.
Benping moments.  For the 8000-1b - in. component, point A lies on
the neutral axis, Fig. 8-6f, so the normal stress is

Op — 0
For the 7000-Ib - in. moment, ¢ = 0.75 in., so the normal stress at point
A, Fig. 8-6g, is
M Ib - in.(0.75 in.
e e TR T s
1 [17(0.75 in.)*]
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7000 1b-in.
\C‘t; 8000 Ib-in. \
4
, S00lb A A + A + A
WA
800 Ib - . _ . .
11200 Ib-in. ‘\Q\o;gg?, ksi 0.604 ksi O \@\21.13 ksi 16.90 ksi
Normal force Shear force Bending moment  Bending moment Torsional moment
Combined loading (500 1b) (800 1b) (8000 Ib-in.) (7000 Ib-in.) (11200 Ib-in.)
(c) (d) (e () (g (h)

Stress Components.

TorsioNAL MOMENT. At point A, py = ¢ = 0.75 in., Fig. 8-6A. Thus
the shear stress is
_ Tc _112001b *in.(0.75 in.)

i = 16 901 psi = 16.90 ksi
Oy [L7(0.75 in.)"] :
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0.604 ksi + 16.90 ksi

~ %
S 0.283 ksi + 21.13 ksi

or

‘\.5 ksi
Superposition. When the above results are superimposed, it is seen 21.4 ksi
that an element of material at A is subjected to both normal and shear
stress components, Fig. 8-6i. )



