Strain Energy

Strain Energy = Work done

Or, Force x Displacement

 $U = (\sigma^2/2E) \times Volume$

Unit: Nm, or kNm, or Nmm

Strain Energy **DUE TO**

1. Elastic

- 1. Resilience
- 2. Proof Resilience
- 3. Modulus of Resilience

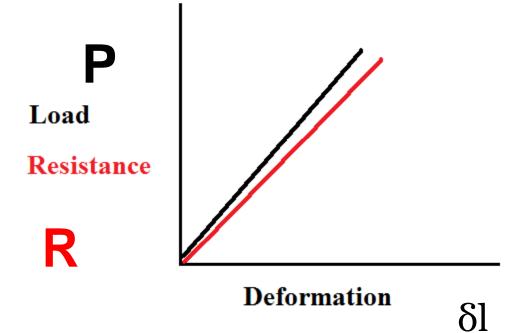
2. Loading

- 1. Gradual
- 2. Sudden
- 3. Impact
- 4. Shock

3. Effects

- 1. Shear
- 2. Bending
- 3. Torsion

Some definitions


 'Elasticity' can be defined as the ability of a body to store energy

 'Resilience' can be defined as the ability of a body to regain its original shape

Work Done = Work Stored

Work Done = $\frac{1}{2}$ P δl Work Stored = $\frac{1}{2}$ σ A δl

Strain Energy= $\frac{1}{2}$ R δl

Strain Energy **DUE TO** Action

Gradual

$$\sigma = P/A$$
; $u = (\sigma^2/2E) V$

Sudden

$$\sigma = 2P/A$$
; $u = (\sigma^2/4E) V$

Impact

$$\sigma = P/A + V[(P/A)^2 + (2EPh)/(AI)];$$
 u = ?

Shock

$$u = (\sigma^2/2E) V$$

Strain Energy **DUE TO** Effect

Shear

$$u = (\tau^2/2G) \times V$$

Bending

$$u = {}_{0}\int^{1} \{(M^{2}) dx / (2EI)\}$$

Torsion

$$u = (τ2/4G) x V ← Solid Shaft$$

$$u = (τ2/4G) x [(D2 + d2)/d2] x V ← Hollow Shaft$$