PART 2

Multibody Kinematics and Dynamics

Chapter 1

1.1 INTRODUCTION
= Determine appropriate movement of the wipers
= View range
= Tandem or opposite
= Wipe angle
= Location of pivots
= Timing of wipers
= Wiping velocity Figure 1.1 Proposed windshield wiper movemens
= The force acting on the wipers




Kinematics

Kinematics
— Deal with the way things move

Kinematic analysis
— Determine

* Position, displacement, rotation, speed, velocity,
acceleration

— Provide
« Geometry dimensions of the mechanism
 Operation range
Dynamic analysis
— Power capacity, stability, member load
Planar mechanism — motion in 2D space



1.4 MECHANISM TERMINOLOGY
Mechanism

Design synthesis is the process of developing mechanism to satisfy a set of

performance requirements for the machine.

requirements.

FIGURE 1.3 Elliptical trainer exercise machine (photo from
WWW.precor.com).

Analysis ensures that the mechanism will exhibit motion to accomplish the

Linkage

Frame

Links— rigid body

Joint

Primary joint (full joint)

= Revolute joint (pin or hinge joint)—
pure rotation

= Sliding joint (piston or prism joint)—

linear sliding

Link 1

Link 2

(a) Pin (b) Sliding

FIGURE 1.4 Primary joints: (a) Pin and (b) Sliding,.

Link |



Mechanism Joint

Higher-order joint (half joint)
= Allow rotation and sliding

= Cam joint

= Gear connection

(a) Cam joint (b) Gear joint

Simple link FIGURE L5 Higher-order joints: (a) Cam joint and (b) Gear oint.
= Arigid body contains only two
joints
= Crank
= Rocker

Complex link

= Arigid body contains more than
two joints

= Rocker arm
= Bellcrank

PO i nt Of inte rest (a) Simple link (b) Complex link
FIGURE 1.6 Links: (a) Simple link and (b) Complex link.
Actuator

= A power source link




1.5 Kinematic Diagram

TABLE 1.1 Symbols Used in Kinematic Diagrams

Component

Typical Form

Kinematic Representation

Simple Link

Simple Link
(with point of
interest) |

I
|

Complex Link

Pin Joint

Revolute Joint




Kinematic Diagram

TABLE 1.1 (Continued)

Component Typical Form Kinematic Representation

Slider Joint

Translation Joint

Cam Joint

Gear Joint




1.7 MOBILITY

M = degrees of freedom = 3(n — 1) — 2jp ~ Jh
n = total number of links in the mechanism

Jp = total number of primary joints (pins or sliding joints)
(revolute joint and translation joint)

jn = total number of higher-order joints (cam or gear joints)

= Constrained mechanism : one degree of freedom
= Locked mechanism : zero degree of freedom

(a) Single degree-of-freedom (M = 1) (b) Locked mechanism (M = () (c) Multi-degree-of-treedom (M = 2)

FIGURE 1.13 Mechanisms and structures with varying mobility.



EXAMPLE PROBLEM 1.3

Figure 1.14 shows a toggle clamp. Draw a kinematic diagram, using the clamping jaw and the handle as points of
interest. Also compute the degrees of freedom for the clamp.

SOLUTION:

—
-

6.

FIGURE 1.14 Toggle clamp for Example Problem 1.3.

Identify the Frame

Identify All Other Links
Link 2: Handle

Link 3: Arm that serves as the clamping jaw

Link 4: Bar that connects the clamping arm and handle
Identify the Joints

Four pin joints are used to connect these different links (link 1 to 2,2 to 3, 3 to 4, and 4 to 1). These joints are
lettered A through D.

Identify Any Points of Interest
Draw the Kinematic Diagram
Calculate Mobility

Having four links and four pin joints,

n=4,j, = 4pins, j, = 0
and

M=3n=1)—2,=jh=34—-1)—2(4) —-0=1

With one degree of freedom, the clamp mechanism is constrained. Moving only one link, the handle, precisely

positions all other links in the clamp.




1.7 Actuators and Drivers

» Electric motors (AC/DC)

« Engines

e Servomotors

« Air or hydraulic motors

* Hydraulic or pneumatic cylinders
e Screw actuators

* Manual

Pin joint

. Link B
Link A Sliding  (piston/rod)
Pin joint (cylinder) joint

(b)

FIGURE 1.20 Hydraulic cylinder.
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EXAMPLE PROBLEM 1.7

Figure 1.26 presents a lift table used to adjust the working height of different objects. Draw a kinematic diagram and
compute the degrees of freedom.

FIGURE 1.26 Lift table for E le Problem 1.7. . o g
el FIGURE 1.27 Kinematic diagram for Example Problem 1.7.

SOLUTION: 1. [Identify the Frame

2. Identify All Other Links
Link 2: Nut
Link 3: Support arm that ties the nut to the table
Link 4: Support arm that ties the fixed bearing to the slot in the table
Link 5: Table
Link 6: Extra link used to model the pin in slot joint with separate pin and slider joints

Identify the Joints
4.  Draw the Kinematic Diagram

i

The kinematic diagram is given in Figure 1.27.

5. Calculate Mobility

n=6 j, = (Spins + 2sliders) =7 j, =0

and
M=3n—-1—-2,—-jh=36-1—-27)-0=15-14 =1

T A A P AR ER T ¥
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1.9 SPECLAL CASES OF THE MOBILITY EQUATION
Coincident Joints

(a) Three rotating links (b) Two rotating and one sliding link

FIGURE 1.28 Three links connected at a common pin joint.

/77

FIGURE 1.31 Mechanism that violates the Gruebler’s equation.

* One degree of freedom actually if pivoted links are the same size

11



EXAMPLE PROBLEM 1.8

SOLUTION:

Figure 1.29 shows a mechanical press used to exert large forces to insert a small part into a larger one.
Draw a kinematic diagram, using the end of the handle as a point of interest. Also compute the degrees of

freedom.

o—

ook W

FIGURE 1.30 Kinematic diagram for Example Problem 1.8. FIGURE1.29 Mechanical press for Example Problem 1.8.

Identify the Frame
Identify All Other Links

Link 2: Handle
Link 3: Arm that connects the handle to the other arms
Link 4: Arm that connects the base to the other arms
Link 5: Press head
Link 6: Arm that connects the head to the other arms
Identify the Joints
Identify Any Points of Interest
Draw the Kinematic Diagram
Calculate Mobility

To calculate the mobility, it was determined that there are six links in this mechanism, as well as six pin joints and
one slider joint. Therefore,
n = 6,j, = (6 pins + Lslider) = 7,j, = 0
and
M=3n—-1)-2j,—-mn=36—-1)—-2(7) —0=15—-14 =1

12



1.10 THE FOUR-BAR MECHANISM

FIGURE 1.33 Rear-window wiper mechanism.

The mobility of a four-bar mechanism consists of the
following:

n= 4,j|:, = 4 pins, j, = 0
and

M=3n—1)—2j, —jh=34—1)—24) —0=1

13



Crank and Rocker

(b) Crank-rocker

\&_—-‘-,

(a) Double crank

(e) Triple rocker

(d) Change point

FIGURE 1.34 Categories of four-bar mechanisms. "



1.10.1 Design of Crank and Rocker

A four-bar mechanism has at least one revolving link if: s+ [ <p + ¢q
Conversely, the three nonfixed links will merely rock if: s+ 1> p +¢q

s : short link
| : long link
P, q:intermediate link

TABLE 1.2 Categories of Four-Bar Mechanisms

Case Criteria Shortest Link Category

1 stil<p+g Frame Double crank
2 s+il<p+g Side Crank-rocker
3 st+il<p+gqg Coupler Double rocker
4 s+l=p+g Any Change point
5 s+1>p+gq Any Triple rocker




1.11 SLIDER-CRANK MECHANISM

(b)

FIGURE 1.37 Pump mechanism for a manual water pump: (a) Mechanism and
(b) Kinematic diagram.

The mobility of a slider-crank mechanism is repre-
sented by the following:

n=4,p = (3pins + 1sliding) = 4,5, = 0
and

M=3n—1)—2j,—jy=34—-1) —24) —0=1.

16



1.12 SPECIAL PURPOSE MECHANISMS
1.12.1 Straight-Line Mechanisms

(a) (h)

FIGURE 1.38 Straight-line mechanisms

1.12.2 Parallelogram Mechanisms

I
vola,
e 2 P2
" 24 "\ oL .
." °%. 727 .
Sote N I
7’ > ',C),\ :
’ oSN & AR BT '
’ N i N e .
a4 i VA
,.' .\.-. ,.:/ \.\.._ !
Yo %
(a) (b)

FIGURE 1.39 Parallelogram mechanisms.
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1.12.3 Quick-Return Mechanisms

(a)

FIGURE 1.40 Quick-return mechanisms.

1.12.4 Scotch Yoke Mechanism

(a) Actual mechanism (b) Kinematic diagram

FIGURE 1.41 Scotch yoke mechanism. 18



Chapter 4 Displacement Analysis

4.4 DISPLACEMENT ANALYSIS

Locate the positions of all
links as driver link is
displaced

= Configuration

= Positions of all the links

= One degree of freedom

= Moving one link will
precisely position all
other links

A6, =7

FIGURE 4.5 Typical position analysis,

FIGURE4.6 Two geometric inversions of a four-bar mechanism.

19



EXAMPLE PROBLEM 4.1

Figure 4.11 shows a kinematic diagram of a mechanism that is driven by moving link 2. Graphically reposition the
links of the mechanism as link 2 is displaced 30° counterclockwise. Determine the resulting angular displacement of
link 4 and the linear displacement of point £,

5.3"

o |
l

FIGURE4.11 Kinematic diagram for Example Problem 4.1.

SOLUTION: 1. Calculate Mobility

n==6ij, = (6pins + 1sliding) = 75, = 0
and Jp = (6] g) = 7jy

M =3(n=1)=2j,—j, = 3(6=1)=2(7) = 0= 15— 14=]

20



4.1 Vector Analysis of Displacement

r4

r5

> X1

> X

(1) Fotr,+rs+r,=0
—1,S6 r,co r.co. -5.3
O R B P B Rl —-0
+rco, | | 1,56, rso, | |-3.2
rl == 3, 01 = 30, r2 = 491 r3 = 33

2 equations for 2 unknows 6,, 6,
(2) —ra+r,+r=0

~1,co r,co
3¥73 + 4¥¥4 + Xi :0
—1,86, r,so, 0.8
=101
2 equations for 2 unknows 6, and X,

21



EXAMPLE PROBLEM 4.6

The mechanism shown in Figure 4.26 is the driving linkage for a reciprocating saber saw. Determine the configura-
tions of the mechanism that places the saw blade in its limiting positions.

[+, 40 5=0
0.5¢c6, | |1.75c6, | |1
+ +
0.5s6, | |1.75s6, y
for 6,=6,, solve for 6 andy,,

for 6, =6, +x, solve for 6 and vy,

FIGURE 4.26 Saber saw mechanism for Example Problem 4.6.

22



4.7 Limiting Positions and Stroke

Stroke, lAR(_'Ima.\'

Cl C Cll

(b) Four-bar

FIGURE4.25 Limiting positions.
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Chapter 6 Velocity Analysis
6.2 LINEAR AND ANGULAR VELOCITY
Mathematically, linear velocity of a point is expressed as
dR
V =lim — 6.1
."n.l;n—lkﬂ dt (6.1)

and for short time periods as

AR
=A; (6.2)
I Ag  dP (6.4)
i} — 111N = .
Ao At dt
- Ad
w = A (6.5)

6.2.2 Linear Velocity of a General Point

FIGURE 6.2 Linear velocities of points on a link.
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EXAMPLE PROBLEM 6.6

Figure 6.11 shows a rock-crushing mechanism. It is used in a machine where large rock is placed in a vertical hopper
and falls into this crushing chamber. Properly sized aggregate, which passes through a sieve, is discharged at the
bottom. Rock not passing through the sieve is reintroduced into this crushing chamber.

Determine the angular velocity of the crushing ram, in the shown configuration, as the 60-mm crank rotates at
120 rpm, clockwise.

—3O0mm x
Crushing |
chunlmhcr i : @
r

| ’ :
s ﬁ; . ! 360 mm .
T 2l D r1 90°! I . >X
' 2

60 mm
60 mm
-

! 180 mm
r4

@, = 120 rpm™

B

©

r3 400 mm

400mm

FIGURE 6.11 Mechanism for Example Problem 6.6.

[,+0,+0+r ,=0
QXL+ @ X0+, xI =0
2 egs for 2 unknowns @, and o,

25



6.6 GRAPHICAL VELOCITY ANALYSIS:RELATIVE VELOCITY METHOD
6.6.1 Points on Links Limited to Pure Rotation or Rectilinear Translation

FIGURE6.10 Links constrained to pure rotation and
rectilinear translation.

6.6.2 General Points on a Floating Link

26



EXAMPLE PROBLEM 6.7

Figure 6.14 illustrates a mechanism that extends reels of cable from a delivery truck. It is operated by a hydraulic

cylinder at A. At this instant, the cylinder retracts at a rate of 5 mm/s. Determine the velocity of the top joint,
point L.

All dimensions are in mm.

FIGURE 6.14 Mechanism for Example Problem 6.7.

2 egs for @, and o,
r=r,+r,
F =@ 30, +@,xI,

27
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EXAMPLE PROBLEM 6.8

Figure 6.16 shows a mechanism that tips the bed of a dump truck. Determine the required speed of the hydraulic

cylinder in order to tip the truck at a rate of 5 rad/min.

FIGURE 6.16 Dump truck mechanism for Example Problem 6.8.

F+r,+r ;=0
solve for 6 and 6,

@, X1 +@ , X1 ,+F, =0

vco,

o, =5rad/min,  ,=
' / ~ % | vsh,

2 egs for 2 unknowns @, and v

28



EXAMPLE PROBLEM 6.10

Figure 6.21 illustrates a roofing material delivery truck conveyor. Heavy roofing materials can be transported on the
conveyor to the roof. The conveyor is lifted into place by extending the hydraulic cylinder. At this instant, the cylinder
is extending at a rate of 8 fpm (ft/min). Determine the rate that the conveyor is being lifted.

Dﬂ

&)

-©

FIGURE 6.21 Conveyor for Example Problem 6.10.

2 egs for 2 unknowns r, and &

@, X0 +@,XI ,+F ,=0

¢ 8co,
=% | 8s6,

2 egs for 2 unknowns @, and w,
29
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EXAMPLE PROBLEM 6.16

Figure 6.38 shows a mechanism used in a production line to turn over cartons so that labels can be glued to the
bottom of the carton. The driver arm is 15 in. long and, at the instant shown, it is inclined at a 60° angle with a
clockwise angular velocity of 5 rad/s. The follower link is 16 in. long. The distance between the pins on the carriage
is 7 in., and they are currently in vertical alignment. Determine the angular velocity of the carriage and the

slave arm.

Carriage

Y
,,,,, B A

Slave arm

FIGURE 6.38 Turnover mechanism for Example Problem 6.16.

B Pl P O 0

DXL+ XL, +@XE ;= 0

given @, find o, and @,

30



Chapter 7 Acceleration Analysis

7.2 LINEAR ACCELERATION
7.2.1 Linear Acceleration of Rectilinear Points

AV  dv Aw  dw
A= lim —=— 7.1 = i =
A0 At dt (7.1) « A{IEHAI dt
v ®
di &0
o= —
dt*
d’R
A= — (7.2)
dt -
- Acw
o= —
At
AV
A= (7.3)

(7.7)

(7.8)

(7.9)

31
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EXAMPLE PROBLEM 7.7

The mechanism shown in Figure 7.11 is designed to move parts along a conveyor tray and then rotate and lower those
parts to another conveyor. The driving wheel rotates with a constant angular velocity of 12 rpm. Determine the angu-
lar acceleration of the rocker arm that rotates and lowers the parts. v

L L

7 O 3
\> > =12 rpm |

T ___ X3 e
Rocker a8 : I\ rl
arm 4.75' 12/rpm 0,=0 1.75'
i b 75 175
Driving wheel =

y (a)

A2 3.75'

FIGURE 7.11 Mechanism for Example Problem 7.7.
L+, +05+0 ,=0
QXL +Q, XL, +@ X[ ;=0
given @, find @, and o,

@ X(@X [1)+ DXL, +0,%(@D,% 1, )+ DXL 3 +03x(@5x [ 5) =0

solve for @, and o,

32



FIGURE 7.11 Mechanism for Example Problem 7.7.

[ =00+
)= @ X040, X040 X(F+ )

fp = OX(@ X1, )+ DX 4@ X (@,% 1, )+ DX (L4 )

33



EXAMPLE PROBLEM 7.8

The mechanism shown in Figure 7.13 is a common punch press designed to perform successive stamping operations.
The machine has just been powered and at the instant shown is coming up to full speed. The driveshaft rotates
clockwise with an angular velocity of 72 rad/s and accelerates at a rate of 250 rad/s’. At the instant shown, determine

the acceleration of the stamping die, which will strike the workpiece. v
250 rad/s’ A
= ad/s* > = 250 rad/s”
,a ;‘\m : i //: @y =72 rad/s
an
‘ \fo= 72 rad/s r X
o1t
',
/ |60°
\ Drive shaft r2 r3
|
e Stamping die
e Workpiece A
- / ) (a)
/ r l+ r ) +r 3= O FIGURE7.14 Diagrams for Example Problem 7.8.
0 0
. " @ Xl +@ Xl ,+ =
FIGURE7.13 Mechanism for Example Problem 7.8. ~1"~1 =2"~2 ",
solve for w, and v
. . 0
@, X £1+C£)1X(Q)1X El) T @,% [2+@2X((L)2X [2)"' a =0

solve for @, and a

34



7.12 EQUIVALENT LINKAGES

FIGURE 7.25 Equivalent linkages.
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Computation of Multibody Kinematics And Dynamics

1.1 Multibody Mechanical Systems

2D Planar Mechanism

Connecting

V/ {Link 4)
s
(=)

7

Pendulum

SRR

(a) () (<)

36



Computer-Aided Design (CAD)

Mechanics: Statics and dynamics.
Dynamics : kinematics and kinetics.

Kinematics is the study of motion, I.e., the study of
displacement, velocity, and acceleration, regardless
of the forces that produce the motion.

Kinetics or Dynamics Is the study of motion and its
relationship with the forces that produce that motion.



1.2 Coordinate Systems

A four-bar mechanism with generalized coordinates.
F

4 Coordinate
q=1[6, 6, 6, ¢]'

3 Constraints

(r* +1%+s®>—d?*)—2rl cos ¢+ 2lscos 8, — 2rscos(¢p—6,) =0
(r* +1° +s*—d*)—2rlcos ¢+ 2dscos &, =0
9+0,+0,+0,—-27=0

degrees of freedom 4-3=1

4



Generalized Coordinates
4"

J= ¢2

2 constraints
rcos¢g +dcosg, +scosg,—| =0

rsing +dsing, +ssing, =0
dof =3-2=1



Cartesian Coordinates
12 coordinates and 11 kinematic constraints

q=[X1 Y1 ¢1 X, Y, ¢2 X3 Y; ¢3]T
xl—%cosqzo

r.
y1_53m¢120
r d
X, +—=C0S¢@ — X, +—cCc0S¢g, =0
2 2
r. d .
y1+§sm¢l —y2—55m¢2=0

d S
X, +Ecos¢2 —x3—5005¢3 =0

d . S .
y2+§sm¢2 —y3—§sm¢3 =0

x3—§cos¢3—l =0

dof =9-8=1

S .
y3—§s.|n¢3 =0



1.3 Computation Kinematics

A mechanism that is formed from a collection of links or bodies kinematically connected to one
another.

An open-loop mechanism may contain links with single joint.

A closed-loop mechanism is formed from a closed chain, wherein each link is connected to at
least two other links of the mechanism.

-

{a) (b)
Figure (a) Open-loop mechanism—double pendulum
and (b) closed-loop mechanism—four-bar linkage.

Single and Multi-Loop Mechanism

(a) {b)
Figure (a) Single-loop mechanism and (b) multi-loop mechanism.



High and Low Pair of Kinematic Joint

{a) . (b} {c)

{f)
Figure Example of kinematic pairs: (a) revolute joint, (b) translational joint,
(c) gear set, (d) cam follower, (e) screw joint, and (f) spherical ball joint.

{d) (e}

42



Generalized Coordinates
3 generalized coordinates,
2 algebraic constraint equations,
|, cos¢, +1,cosg, —1,cosg, —d, =0
| sing +1l,sing, —1,sing, —d, =0

Figure four-bar mechanism.



2.1 Planar Kinematics in Cartesian Coordinates

The column vector ¢ =[X,Y,d] is the vector of coordinates
for body 1 in a plane.

{a) (b)
g =[xV, z,¢1,¢52,¢3]iT IS the vector of coordinates for body |

In three - dimensional space.

Inertial system X — Y P P
> " =r +As
Body-fixed system ¢ — 1 l I I

Coordinate transformation matrix

COS¢ —sing |
Sing  COS¢ |

A:




Constraint Equation

A constraint equation describing a condition on the vector of coordinates of
a system can be expressed as follows: @ = cI)(q) =0

In some constraint and driving function, the variable time may appear

explicitly: ¢ = <I>(q,t) -0
Constraint Jacobian Matrix by differentiating the constraint equations

®(q)=0

ai)q =0, often denoted as ®,q =0

aq

5
also denoted as ai)'q' + q =0
o o

@, + (@,4),4 =0
D, = —~(@,0),G=7



Redundant Constraint

« Kinematically equivalent.

o
A,
(a)

Figure (a) A double parallel-crank mechanism and (b) its kinematically equivalent.

Kinematics of Mechanism
Mainly composed of revolute joint and translation joint

{b)

Figure Quick-return mechanism: (a) schematic presentation and
(b) its equivalent representation without showing the actual outlines.



2.2 Revolute Joint

P P __
r+s, —r; —s, =0

(r,2) _ 'P P
O 7 =r+As —rj—Ajsj =0

Do) — {xi +&7 cosg 17 sing, —x, — &7 cosg, +7° sing. } } {O}

Y, +& sing +17 cosg —y, —&; sing, —n; cosg; | |0

Figure Revolute joint P connecting bodies| and | .



Time Derivative of Revolute Joint Constraint

@ =X +& Cos@ —7; sing —x; —&; Cos¢, +1; sing, =0

@, =y, +& sing +1; cosg —y, —&; sing, —n; cosg; =0

%,- (x"sinf,+hcosf))f - x +(x sinf +h7 cosf )f =0

y,+(x"cosf - A’ sinf )f,- y - (x7cosf - A sinf )f =0

"J cP ¢ cP cP c® cs .
EII. IE'!.:I'I:' E(;}. Eh"-h_:' IE'z.l-'l'lh_:' Efr?:i

Do 1~ 0« (=) —1a 0« (v =y,)¢

0+ 1o [:xf—x]ﬂ 0+ o —[:xf—x]ﬂ




Time Derivative of Revolute Constraint
@ =X +& cosg —1; sing —x; —&; cosg, +1; sing, =0
@, =y, +& sing +n cosg -y, —&; sing, —n; cosg, =0
%,- (x"sinf, +h/ cosf))f,- % +(x/sinf +h’ cosf )f =0
y,+(x"cosf - hsinf)f - y - (xcosf - hsinf )f =0
% — (&7 sing +n] cosd)d — (&7 cosg +7” sing )’ — X,
+(&7 sing, +n7 cosd, ), + (& cosg, —n! sing,)pZ =0
;= (& cos, +n sing)g, — (& sing, +7 cosgy )¢ -V,
— (&7 cosg, —n? sing,)g, — (&7 sing, +nf cosg,)g? =0

p—

X;

or ® o @ ® o @] Vi
[0 G o @ i’ = y"?
¥
y(r’2)= _ij_

(E” cos¢ +nsing)¢’ - (SJ‘.D cosg + nf sing, )gbf
(E”sing +n" cosp )¢’ - (Ef sing + nf cosg, )qu2

(x" =x )¢ = (x] =x )¢’
=)0 = (y) =y )e;

72 02
= Sip¢i - Sjp¢j




2.3 Translational Joint

SUNUNNAN

—- 0 |-—

T T e
(N

PO AN

Figure Different representations of a translational joint.

Translational Joint
n'd=0

[Xip - XiR yiP - YiR]{XiP _ij}

0
yiP B y;:)

o | TOT XD =Y O =y =X7) :H
¢i_¢j_(¢io_¢?) 0

Figure A translational joint between bodies|! and j .




Time Derivative of Translational Joint Constraint

o (X — XiQ)(yz'D -y )=y - YiQ)(X:'D _Xip):| _ {O}

0 0
¢—¢,— (& —9¢;) 0
O o | GF-¥D)| —af -xfy| TR =D | F o0y o —xfye | GO
~7 -y, ) - ¥8) (0] = v -0
+ + +
0e 0« 1o 0- 0- le

g=-2(x - x2)(x,- %)+ (v - y)G -y -1 - 220 v O - v - 1)



Driving Link

)

(a) {b)

Figure (a) The motion of the slider is controlled in the X —direction
and (b) the motion of point P is controlled in the y — direction.

®=x —d(t)=0

d=y —d(t)=0



A Matlab Program for
Kinematics of a four-bar linkage

OA — 80mm 8 ConAsr;[)ralnt equ(a)ltlons:

— — COS ¢, =

AB = 260mm X1+40 . Zl 0

o -y, +40sing, =

2_180mm X, +40cos¢, —x, +130cos¢, =0
OC =180mm

y, +40sing, -y, +130sing¢, =0
n, X, +130cos ¢, — X, +90cos ¢, =0
Yy, +130sing, —y, +90sing, =0
X, +90c0s ¢, —180=0

Y, +90sing, =0

driving link

¢, —2nt—n7/2=0

Tosolve the 9 equations for 9 unknownq' = [xl, Vi, 8, %5, Yo @y %oy Vs ¢3]
53



Jacobian matrix and velocity equations

(-

S B8 B8 8 B B B o B

©

[N

N

w

IN

ol

(3]

~

(o)

(-1 0 -40sing, 0 O 0
0 -1 40cos¢p, 0 O 0
1 0 -40sing, -1 0 -130sing,
0 1 40cosgp, 0 -1 130cose,
0 O 0 1 0 -130sing,
0 O 0 0 1 130cose,
0 O 0 0 0 0
0 O 0 0 O 0
0 O 1 0 O 0

Tosolve Jg = g for the velocity ¢

0
0
0
0
-1

0
1
0
0

0 0

0 0

0 0

0 0

0 —90sin ¢,
-1 90cos ¢,
0 -90sing,
1 90cos ¢,
0 0

OO O O O O o o o

N
N




Acceleration equations

40cos¢ - @

40sin ¢ - ¢
50c0s¢ - ¢ +130c0sd, - @,
50sing - 4" +130sin ¢, - @,
y=|130c0s¢, - @," +90C0S ¢, - B,
130sin ¢, - ¢," +90sin ¢, - @,

90cos ¢, - 4,

90sin @, - 4,

0

Tosolve Jg =y for the acceleration ¢



The procedure of m-file

Initialize and startatt =0

v

,l Call nonlinear solver with initial position tosolve q(t)

v

Determine Jacobian matrix and £ with g(t) tosolve g(t)

v

Determine y with ¢(t) tosolve ¢(t)

!

Assume q(t + A¢) with intended motion

and set it as the new initial position of next iteration

v

Plot the time response of q(t), ¢(t)and ¢(t)

v

Determine the positions of the bars and animate them




The code of m.file (1)

1. % Set up the time interval and the initial positions of the nine coordinates
2. T Int=0:0.01:2;

3. X0=[0 50 pi/2 125.86 132.55 0.2531 215.86 82.55 4.30261];
4. global T

5. Xinit=X0;

6.

7. % Do the loop for each time interval

8. for Iter=l:length(T Int);

9. T=T Int (Iter);

10. % Determine the displacement at the current time

11. [Xtemp, fval] = fsolve(@constrEgd4bar,Xinit);

12.

13. % Determine the velocity at the current time

14. phil=Xtemp (3); phi2=Xtemp (6); phi3=Xtemp (9) ;

15. JacoMatrix=Jacod4bar (phil,phi2,phi3) ;

l6. Beta=[0 0 O 000 0 0 2*pil"';

17. Vtemp=JacoMatrix\Beta;

18.

19. % Determine the acceleration at the current time

20 dphil=Vtemp (3); dphi2=Vtemp (6); dphi3=Vtemp (9) ;

21. Gamma=Gamma4bar (phil, phi2, phi3, dphil,dphi2,dphi3) ;

22. Atemp=JacoMatrix\Gamma;

23.

24. % Record the results of each iteration

25. X(:,Iter)=Xtemp; V(:,Iter)=Vtemp; A(:,Iter)=Atemp;

26.

27. % Determine the new initial position to solve the equation of the next
28. % iteration and assume that the kinematic motion is with inertia
29. if Iter==

30. Xinit=X(:,Iter);

31. else

32. Xinit=X(:,Iter)+ (X(:,Iter)-X(:,Iter-1));

33. end

34

: 57
35.end



The code of m.file (2)

36.% T vs displacement plot for the nine coordinates

37.figure

38.for i=1:9;

39. subplot(9,1,1)

40. plot (T Int,X(i,:))

41. set (gca, 'xtick',[], 'FontSize', 5)
42 .end

43.% Reset the bottom subplot to have xticks
44 .set (gca, 'xtickMode', 'auto')

45.

46.% T vs velocity plot for the nine coordinates
47.figure

48.for i=1:9;

49, subplot(9,1,1)

50. plot (T Int,V(i,:))

51. set (gca, "xtick',[], 'FontSize', 5)

52.end

53.set (gca, "xtickMode', 'auto')

54.

55.% T vs acceleration plot for the nine coordinates
56.figure

57.for i=1:9;

58. subplot(9,1,1)

59. plot (T Int,A(i,:))

60. AxeSup=max (A (i, :));

ol. AxeInf=min (A(i, :));

62. if AxeSup-AxeInf<0.01

63. axis([-inf,inf, (AxeSup+AxeSup) /2-0.1 (AxeSup+AxeSup)/2+0.1]1);
64. end

65. set (gca, 'xtick',[], 'FontSize', 5)

66.end

67.set(gca, 'xtickMode', 'auto')



69.
70.
71.
2.
73.
4.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

The code of m.file (3)

68.% Determine the positions of the four revolute joints at each iteration

Ox=zeros (1, length (T _Int));
Oy=zeros (1, length (T _Int));
Ax=80*cos (X(3,:));

Ay=80*sin (X (3,:));
Bx=Ax+260*cos (X (6,:));
By=Ay+260*sin (X (6,:));
Cx=180*ones (1, length (T Int));
Cy=zeros (1l,length(T Int));

% Animation

figure

for t=1l:length(T Int);
barlx=[0x(t) Ax(t)]:;
barly=[Oy(t) Ay(t)];
bar2x=[Ax (t) Bx(t)]:;
bar2y=[Ay(t) By(t)];
bar3x=[Bx(t) Cx(t)];
bar3y=[By(t) Cy(t)];
plot (barlx,barly,bar2x,bar2y,bar3x,bar3y);
axis([-120,400,-120,2001);
axis normal
M(:,t)=getframe;

end
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g w N

Initialization

. % Set up the time interval and the initial positions of the nine coordinates
. T Int=0:0.01:2;

. X0=[0 50 pi/2 125.86 132.55 0.2531 215.86 82.55 4.3026];

. global T

. Xinit=XO0;

B W bd e

The sentence is notation that is behind symbol “%”.

Simulation time is set from 0 to 2 with At = 0.01.

Set the appropriate initial positions of the 9 coordinates which are used to solve nonlinear solver.

Declare a global variable T which is used to represent the current time t and determine the

driving constraint for angular velocity.
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10.

Determine the displacement

[Xtemp, fval] = fsolve (@constrEgdbar,Xinit);

10.

Call the nonlinear solver fsolve in which the constraint equations and initial values are necessary. The
initial values is mentioned in above script. The constraint equations is written as a function (which can
be treated a kind of subroutine in Matlab) as following and named as constrEg4bar. The fsolve finds a

root of a system of nonlinear equations and adopts the trust-region dogleg algorithm by default.

QT 0B 3 HFANUYEDWQ HHDODOQ O W

. function F=constrEqgdbar (X)

. global T

. x1=X(1); y1=X(2); phil=X(3);
. x2=X(4); y2=X(5); phi2=X(6);
. xX3=X(7); y3=X(8); phi3=X(9);

. F=[ -x1+40*cos (phil);

-yl+40*sin (phil) ;
x1+40*cos (phil) -x2+130*cos
y1+40*sin (phil) -y2+130*sin
x2+130*cos (phi2) -x3+90*cos
y2+130*sin (phi2) -y3+90*sin
x3+90*cos (phi3)-180;
y3+90*sin (phi3) ;
phil-2*pi*T-pi/2];

phi2) ;
phi2) ;
) .
)

4

phi3
phi3

4

~ o~ o~ —~

The equation of driving constraint
Is depended on current time T
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14.
15.
le6.
17.

Determine the velocity

phil=Xtemp (3); phi2=Xtemp (6); phi3=Xtemp (9) ;
JacoMatrix=Jacodbar (phil,phi2,phi3);

Beta=[0 0 O 000 0 0 2*pil"';
Vtemp=JacoMatrix\Beta;

15.

16.
17.

Call the function Jaco4bar to obtain the Jacobian Matrix depended on current values of
displacement.

Declare the right-side of the velocity equations.

Solve linear equation by left matrix division “\” roughly the same as J18. The algorithm adopts
several methods such as LAPACK, CHOLMOD, and LU. Please find the detail in Matlab Help.

a
b
C
d
e.
£.
g
h
i
J
k

. JacoMatrix=| -1 0 -40*sin(phil)

. function JacoMatrix=Jacodbar (phil,phi2,phi3)

0 00 0 0 0;
0 -1 40*cos (phil) 0 00 0 0 0;
1 0 -40*sin (phil) -1 0 -130*sin (phi2) 0 0 0;
0 1 40*cos (phil) 0 -1 130*cos (phiZ2) 0 0 0;
000 1 0 -130*sin(phiZ2) -1 0 -90*sin(phi3);
000 0 1 130*cos(phi2) 0 -1 90*cos (phi3);
000 000 1 0 -90*sin(phi3);
000 0 00 0 1 90*cos (phi3);
001 0 00 0 0 01
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Determine the acceleration

20. dphil=Vtemp (3); dphi2=Vtemp (6); dphi3=Vtemp (9) ;

21. Gamma=Gammadbar (phil,phi2,phi3,dphil, dphi2, dphi3) ;

22. Atemp=JacoMatrix\Gamma;

21. Call the function Gammad4bar to obtain the right-side of the velocity equations depended on
current values of velocity.

22. Solve linear equation to obtain the current acceleration.

a. function Gamma=Gamma4dbar (phil,phi2,phi3,dphil,dphi2, dphi3)

b

c. Gamma=[ 40*cos (phil) *dphil*2;

d 40*sin (phil) *dphil”~2;

e. 40*cos (phil) *dphil~2+130*cos (phi2) *dphi2"2;

f. 40*sin (phil) *dphi172+130*sin (phi2) *dphi2"2;

g 130*cos (phi2) *dphi2”2+90*cos (phi3) *dphi3"2;

h 130*sin (phi2) *dphi2~2+90*sin (phi3) *dphi3~2;

i 90*cos (phi3) *dphi3"2;

g 90*sin (phi3) *dphi3~2;

k 0]
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Determine next initial positions

29. if Iter==

30. Xinit=X{(:,Iter);

31. else

32. Xinit=X{(:,Iter)+(X(:,Iter)-X(:,Iter-1));
33. end

29.~33. Predict the next initial positions with assumption of inertia except the first time of the loop.




37.
38.
39.
40.
41.

42

43.

Plot time response

figure
for i=1:9;
subplot(9,1,1)
plot (T Int,X(i,:))
set (gca, "xtick', [], 'FontSize', 5)
.end
% Reset the bottom subplot to have xticks

44 .set(gca, 'xtickMode', 'auto')

45.

46.% T vs velocity plot for the nine coordinates
47.figure

48.for i=1:9;

37...

37. Create a blank figure .

39. Locate the position of subplot in the figure.

40. Plot the nine subplots for the time responses of nine coordinates.
41. Eliminate x-label for time-axis and set the font size of y-label.
44. Resume x-label at bottom because the nine subplots share the same time-axis.
47.~ It is similar to above.
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69.
70.
71

Ox=zeros (1,length (T Int));
Oy=zeros (1,length (T Int));

Ax=80*cos (X(3,:));

Anlmatlon

72 .Ay=80*sin (X(3,:));
73.Bx=Ax+260*cos (X (6, :)); |
74. ..

80.for t=l:length(T Int); i
81. barlx=[0x(t) Ax(t)];

82. barly=[0Oy(t) Ay(t)]; i
83. bar2x=[Ax(t) Bx(t)]:;

84. bar2y=[Ay(t) By(t)]:; N
85. bar3x=[Bx(t) Cx(t)]:;

86. bar3y=[By(t) Cy(t)]:; B
87.

88. plot (barlx,barly,bar2x,bar?2y,bar3x,bar3y) ,
89. axis ([-120,400,-120,200]) ;

90. axis normal

91.

92. M(:,t)=getframe;

93.end

69. Determine the displacement of revolute joint.

80. Repeat to plot the locations by continue time elapsing.
81. Determine the horizontal location of &

88. Plot OA, AB, BC, and OC

89. Set an appropriate range of axis.
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Example of a slider-crank mechanism

y

11 Constraint equations: 7, B n
2

X =0
y; =0

¢ =0

X, — X, +200cos¢, =0

Y, — Y, +200sing, =0

X, +300cos ¢, — x, +100cos¢, =0

y, +300sin ¢, — y, +100sin g, =0 AG =200mm
X, +100cos¢@, —x, =0 GB = 300mm
y, +100cos¢g, —y, =0 BO = 200mm
100cos ¢, (y, — Y, —100sin ¢, ) —100sin ¢, (x, —x, —100cos g, ) =0

¢,—¢=0

driving link

¢, —5.76+1.2t =0

To solve the 12 equations for 12 unknown a" =| X, ¥, 4 X, ¥,. 8. %, Vo 8. %0 Yau s | 0



Jacobian matrix

=100[cos g, (x, —x,)+sing,(y, - y,)]
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The right-side
of the acceleration equations

0
0
0

200c0s ¢, p,”

200sin ¢.4,”

300cos ¢4, +100c0S ¢,8,”
300sin ¢,4,” +100sin ¢,4,"
100c0s ¢, ¢,

100sin ¢,4,"

y(10)
0

0

where 7/(10) =200cos ¢4 (Xl o X4 )&4 +200sIn ¢4(y1 o y4 )¢54 _ ¢542 [1OOSIn ¢4 (Xl o X4)_1OO Cos ¢4(y1 — Y, )]



Time response of displacement




Time response of velocity
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Time response of acceleration




Kinematic Modeling

Ground
x =0.0, y,=0.0, ¢=0.0

Revolute joint
&L =0.0, ns =0.0, &'=-200.0, n;=0.0
£8=300.0, =00 &P=-1000, 7°=0.0

translational joint

L0]

EL=0.0, 7pt=00, & =-100.0, 72 =0.,
§4C.: :100.0, 774(:: = 0.0’ 510 — 0_0’ nf = O_O

‘V driving link
] - e {| WL $,—5.76+1.2t =0.0

i

Figure Kinematic modeling of a slider-crank mechanism.
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Translation Joint
A1

n d B

&1

Ic i x, —100cgd, | [ x,
" |y, -100s¢, | |v,
@ =(-100cg, )(y, ~100sd; -y, ) —(x, ~100c¢; — X, )(~100s¢; )

0D/ _
Axl = +100s¢,

o0/ —_
Ayl =-100c4,
6% 4, = ~100(~100c4, )c; +100s¢,¢;

004, =(¥:~10054; —y, )100sg; +(x, ~100cg; — x,)100c4, =0
8_ {Xl}{wl —sﬂ{—loo} _ {xl —100c¢1}
T Lv) [s4ocafl O | [y,—100s4
o [c@ —s@}[ 0 } _ Floosﬂ
" |s¢, c¢, |[-100]| |-100cg,
X, —~100cd, — X,
y, —100s¢, — yj

n'd =[100s¢, —100c¢, | {
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Kinematic Modeling

Ground
®d =x=0.0
D, =y, =0.0
®,=¢ =00

revolute joints @, = X, — X, +200c0s 4, = 0
D, =y,—y,+200sing, =0
@, = X, +300cos ¢, — x, +100cos ¢, =0
®, =y, +300sin¢g, —y, +100sing, =0
®, =x, +100cos ¢, —x, =0
@, =y, +100sing, -y, =0

translational joint

, @, =(-100cos ¢,)(y, —100sin ¢ - v,)
—(x,—100cos ¢, — x,)(-100sin¢,) =0
* ®,=¢,—¢ =0

N - LL SN o . driving constraint

Ll | - D,=¢ —-576+1.2t=0

i

Figure Kinematic modeling of a slider-crank mechanism.
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Jacobian Matrix

b,

Yy

¥

by

Yz

L

- - cO@¢=-°-@@-
DDDD@UHUD@DD
s> c@EA@®-= = = = -
DUGGGD_@.UUU.UD
HDD@D@DDUUUD
co - -QOO® - -G
cc@= - <A -
ﬂ@ﬁ.ﬂ.ﬁ.ﬁ.ﬁ.ﬂ@@ﬂ.ﬂ
I - A
® % 2 03 32 3 %88 B
= Fa .M W T - - .
L= I B~ - T~ T~ - T - - -
=mom oM e e o os oe F 8 3

Figure The Jacobian matrix.
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o ®
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3.2 Solution Technique

kinematic constraints ®=®(q) =0

driving link ®9 =d(q,t) =0
i i 99 4 = 0or®q=0
velocity equations o q=uor ®q=

acceleration Z—?;CH 5 =0 or 4+ (®,9),q=0
@, G+ (®,9),d+ 20,4+ ®, =0
® | -(®,9),9 ) y
D" q_ ~(®,"9),4-2®,q-D," | —(@g),4-20 - D"




Solution Technique

At any given instant ¢
(1) Solve { @,(q)§=0
@ (q,t)g = (the right hand side)

n equations for n unknowns d(t)

2) Solve .
@) @,(9)q=0
@{"(qg,t)q = (the right hand side)

n equations for n unknowns d(t)

(3) SO|V€{ (Dq (@)= 7

@ (q)q =(the right hand side)

n equations for n unknowns (t)



4.1 Planar Rigid Body Dynamics

mixi:fxi
miyi:fyi
/ui&i:ni
'm 0 O] % _fx_
0 m 0| y|=|T,
0 0 ullé]| [n]




Constraint Force

®d(q,t) =0, del1™

%5q =0 or ®6q=0, ® 0™

oq

There exists Lagrange Multiplier 2, 2 0 ™
such that '@, is that constraint force.
The equations of motion can be written as
Mg =g+9"

9" =—®@,'1



lllustration of Constraint Force

Pure rolling of a disk down a slope

—mgsd + f =mX

—mgcéd+ N =my

—mgcd+N =0

f-R=1¢

4 eqgs. for 5 unknowns %, ¥, ¢, f, N
X+R¢ =0

constraint equation
y—R=0

=——gSH y =0, é—zgse N = mgcé, f—lmgse



Generalized coordinate x, ¢
Constrainteq. X+R¢=0 y—R=0

= -X—R¢=0
_ s
M 9 ) —mgsé
aq 1]
5 ~ ;1 =| —mgcé
CLAN 0
A
m 0 0 -1 0ry T "_mgso]
0 m 0 0 1 § _mgco
0 0 %mR2 R 0l|¢ |=| O
-1 —R 0 O A 0
0 1 0 0 O__/12_ L0
., 2 N - 20 1
3 eqs. for 3 unknowns X=——=qsé, V=0, ¢ =—=50, A ==mQgse
q 39 y ¢ 3R 3 g
- _
L 1 0 —gmgsé?
The constraint force 6_¢ A= 0 1{A=| mgcl
i R0 —lngse
L 3 13x1

IS the friction force for pure rolling.



4.2 Constraint Force in Revolute Joint

m 0 O0}X 1 0 f,
O m Ofy|+ 0 1 {j}}z fy
_O 0 H | _¢_, __(yip_yi) (XiP_Xi)_ i - n
mijéi :f(x)z' ) /1
my, :f(y)z‘_ /,

”Zfi =N - (yz'P_ yi)/1+(xip- xi)/Z




Constraint Force in Translational Joint

{a)

For a translational joint between | and |,
the equation of motion for body | can be written as

mX = f, +(yip - le)ﬂl
m, y. — fyi "'(Xip _XiQ)ﬂl
i, =0 =[] =X ) =x2) + (Y] =y =y + 4,
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4.3 Formulation of Multi-body Dynamic Systems

I\/I(':i+CI)qu=g
©g-y=0
T
M (I)q q _| 8
@ 0 A Y

N+ Mm linear algebraic equations in N+ M unknowns
for 4 and 4.



A Matlab Program for
Dynamics of a four-bar linkage

OA=0.08m M_, =0.08kg | =4.27x10"kg-m’
AB =0.26m M =0.26kg | =1.46x10"kg-m’
BC =0.18m M. =0.18kg | =4.86x10"kg-m’
OC =0.18m

g=9.8m/s*

90



Mass matrix and external force vector

M., =0.08kg 1, =4.27x10°kg-m’ g=9.8m/s* |
M. =0.26kg IE:1.46x10‘3kg-m2 T=01N-m
My =0.18kg | =4.86x10"kg-m’

008 0 0 0 o0 0 0 0 0 0
0 008 0 0 0 0 0 0 0 0.08x9.8
0 0 427x10° 0 0 0 0 0 0 0.1
0 0 0 026 0 0 0 0 0 0
0 0 0 0 0.26 0 0 0 0 g=|0.26x9.8
0 0 0 0 0 146x10° 0 0 0 0
0 0 0 0 0 0 018 0 0 0
0 0 0 0 0 0 0 018 0 0.18x9.8
0 0 0 0 o0 0 0 0 486x10* 0




9%9

Jacobian matrix and y

1 0 —0.04sing,
0 -1 0.04cos,
1 0 -004sing
0 1 0.04cos,
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

OA=0.08m
AB =0.26m
BC =0.18m
OC =0.18m
0 0 0 0
0 0 0 0
-1 0 -0.13sing, O
0 -1 0.13cosg, 0
1 0 -0.13sing, -1
0 1 0.13cos ¢, 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0

0 0

0 0

0 0

0 -0.09sin ¢,
-1 0.09cosg,
0 —0.09sin g,
1 0.09cosg,
0 0

|

0.04cos¢ - 4’

0.04sin ¢, - 4
0.05c0s¢ - ¢° +0.13c0s ¢, - §,°
0.05sin ¢, - 4> +0.13sin ¢, - @,
0.13c0S¢, - ¢ +0.09C0S ¢, - 6
0.13sin ¢, - 4, +0.09sin ¢, - &’

0.09cos ¢, - .’

0.09sin ¢, - ¢,°

0




Computation

\]T

S

8x8

The objective is to solve the differential equation { 9

9x8

. : _ _ M J; ' |
In numerial computing, the first step is tosolve { OQXS }B = {g

for ¢(0),,, and 4(0),, with initial position g(0)and velocity ¢(0).

9%8 8x8

4(0) a(41)
to repeat the above step for ¢(4¢)and A(4¢).

Integrate {

q‘(O)} . {q(m)

VN } and use the ¢(4¢)and q(4¢)

Repeat t + Az until terminal condition.



A convenient way with Matlab solver

Solve initial value problems for ordinary differential equations with
ode45(commended), ode23, odell3...

The equations are described in the form of z ‘=f(t,z)

X

1

Yi

Letz = ¢3 :{q} z’:{q}
LG G

Yy

4,



The syntax for callir

/[?,ZJ = ode45 (@Func4Bar, [0:0.005:2],zw;k
J\

A vector of initial
Solution array conditions

column vector of

time points

A vector specifying the interval
of integration

A function that evaluates the right side of the
differential equations

function dz=Funcé4Bar (t, z)
global L1 L2 L3 L4 torque gravity

phil=z(3); phi2=z(6); phi3=z(9);
dphil=z (12); dphi2=z(15); dphi3=z(18);

M=diag([Ll L1 L173/12 L2 L2 L273/12 L3 L3 L3"3/12]);

J=[ -1 0 -0.5*L1*sin(phil) O 0 O 0 0 0;
0 -1 0.5*L1*cos(phil) 00O 0 0 0;
1 0 -0.5*Ll1*sin(phil) -1 0 -0.5*L2*sin(phi2) 0 0 0;
01 0.5*Ll*cos(phil) 0 -1 0.5*L2*cos (phiZ2) 0 0 0;
0 00 1 0 -0.5*L2*sin (phi2) -1 0 -0.5*L3*sin(phi3);
00O 01 0.5*L2*cos(phiZ2) 0 -1 0.5*L3*cos (phi3);
000 000 1 0 -0.5*L3*sin(phi3);
0 00 000 0 1 0.5*L3*cos (phi3)];

g solver in Matlab

95



The syntax for calling solver in Matlab

J=[ -1 0 -0.5*L1*sin(phil) O 0 O 0 0 0;
0 -1 0.5*L1*cos(phil) 00O 0 0 0;
1 0 -0.5*L1*sin(phil) -1 0 -0.5*L2*sin(phi2) 0 0 0;
01 0.5*Ll*cos(phil) 0 -1 0.5*L2*cos (phiZ2) 0 0 0;
0 00 1 0 -0.5*L2*sin (phi2) -1 0 -0.5*L3*sin(phi3);
00O 01 0.5*L2*cos(phiZ2) 0 -1 0.5*L3*cos (phi3);
000 000 1 0 -0.5*L3*sin(phi3);
0 00 000 0 1 0.5*L3*cos (phi3)];
gamma=[ 0.5*Ll*cos(phil) *dphil”"2;
0.5*L1*sin(phil) *dphil”"2;
0.5*L1*cos (phil) *dphil”*2+0.5*L2*cos (phi2) *dphi2"2;
0.5*L1*sin(phil) *dphil”2+0.5*L2*sin (phi2) *dphi2"2;
0.5*L2*cos (phi2) *dphi2"2+0.5*L3*cos (phi3) *dphi3"2;
0.5*L2*sin (phi2) *dphi2"2+0.5*L3*sin (phi3) *dphi3"2;
0.5*L3*cos (phi3) *dphi3"2;
0.5*L3*sin (phi3) *dphi3"2];

g=[0 gravity*Ll torque

Matrix=[M J';

0 gravity*L2 O

0 gravity*L3 0]"';

J zeros(size(J,1l),size(J,1))]1;

d2g=Matrix\[g;gamma] ;

dz=[z(10:18, :);

d2g(1:9,

1
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Time response of acceleration
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A slider-crank mechanism

)
AC =0.1m M . =0.1kg |, =6.67x10"kg-m?
AG =0.2m M, = 0.5kg |, =1.04x10kg-m’
GB =0.3m Mo =0.2kg | . =6.67x10"kg-m’

BO =0.2m g=9.8m/s*
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nodes

5.1 Euler Angles

Figure 5.1 The rotations defining the Euler Angles.
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Time Derivatives of Euler Angles
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Bryant Angles

1 0 O ' cp, 0 s¢, | cp, —s¢g, O
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Figure 5.4 Rotations defining Bryant angles.
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Time Derivative of Bryant Angles
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