TIMBER BEAMS:

- Bending failure
- Lateral torsional buckling
- Shear failure
- Notch failure
- Bearing failure
- Excessive deflections

Bending Strength

Linear elastic stresses

Design Equation:

$$M_r = \varphi F_b S$$

Where F_b is the characteristic bending strength For timber it is $F_b = f_b (K_D K_H K_{Sb} K_T)$

Bending failure in compression

- Only likely for very high grade material
- Benign failure mode

Logging bridge near Pemberton, BC

Glulam I-beam

Bending failure in tension

- Most likely failure mode
- Brittle
- Combination of tension and shear, although tension fracture is the initiating mode

$$M_{r} = \varphi F_{b} S K_{zb} K_{L} - Lateral torsional where $\varphi = 0.9$ $\varphi = f_{b} (K_{D} K_{H} K_{Sb} K_{T})$$$

Table 5.3.1C Specified Strengths and Modulus of Elasticity for Beam and Stringer Grades (MPa)

Species	Grade	Bending at extreme fibre,* f _b	Longi- tudinal shear, f _v	Compression				
				Parallel to grain, f _c	Perpen- dicular to grain, f _{cp}	Tension parallel to grain, f _t	Modulus of elasticity	
							E	E ₀₅
D Fir-L	SS No. 1 No. 2	19.5 15.8 9.0	0.9	13.2 11.0 7.2	7.0	10.0 7.0 3.3	12 000 12 000 9 500	8 000 8 000 6 000
Hem-Fir	SS No. 1 No. 2	14.5 11.7 6.7	0.7	10.8 9.0 5.9	4.6	7.4 5.2 2.4	10 000 10 000 8 000	7 000 7 000 5 500
S-P-F	SS No. 1 No. 2	13.6 11.0 6.3	0.7	9.5 7.9 5.2	5.3	7.0 4.9 2.3	8 500 8 500 6 500	6 000 6 000 4 500
Northern	SS No. 1 No. 2	12.8 10.8 5.9	0.6	7.2 6.0 3.9	3.5	6.5 4.6 2.2	8 000 8 000 6 000	5 500 5 500 4 000

* Specified strengths for beams and stringers are based on loads applied to the narrow face. When beams and stringers are subject to loads applied to the wide face, the specified strength for bending at the extreme fibre and the specified modulus of elasticity shall be multiplied by the following factors:

	fb	E or E _{os}		
Select Structural	0.88	1.00		
No. 1 or No. 2	0.77	0.90		

Glulam beams in a Gerber system

20f-E and 24f-E grades

20f-EX and 24f-EX grades

Table 6.3 Specified Strengths and Modulus of Elasticity for Glued-Laminated Timber (MPa)

		Douglas	Fir-Larch				
		24f-E	24f-EX	20f-E	20f-EX	18t-E	16c-E
Bending moment (pos.)		30.6	30.6	25.6	25.6	24.3	14.0
Bending moment (neg.)	fb	14.0	30.6	14.0	25.6	24.3	14.0
Longitudinal shear	f _v	2.0	2.0	2.0	2.0	2.0	2.0
Compression parallel	fc	30.2*	30.2*	30.2*	30.2*	30.2	30.2
Compression parallel combined with bending	f _{cb}	30.2*	30.2	30.2*	30.2	30.2	30.2
Compression perpendicular — compression face bearing — tension face bearing	f _{cp}	7.0 7.0	7.0 7.0	7.0 7.0	7.0 7.0	7.0 7.0	7.0 7.0
Tension net section (See Clause 6.5.11)	fm	20.4*	20.4	20.4*	20.4	23.0	20.4
Tension gross section	ftg	15.3*	15.3	15.3*	15.3	17.9	15.3
Tension perpendicular to grain	f _{tp}	0.83	0.83	0.83	0.83	0.83	0.83
Modulus of elasticity		13 100	13 100	12 400	12 400	13 800	12 400

Lateral torsional buckling of timber beams

Lateral torsional buckling of deep I-joists

Capacity of a timber beam subject to lateral torsional buckling

Deep glulam beam

Prevention of lateral torsional buckling

K_L = 1.0 when lateral support is provided as shown

d/b ^d b	Lateral support at spacing:		
< 4	no support		
< 5	► Purlins or tie rods		
< 6.5	< 610 mm compression edge held by decking or joists		
< 7.5	< 610 mm top edge < 8dplus bridging		
< 9	both edges		

Bridging for floor joists

Shear stress in a beam

UNBC Prince George, BC

Shear failures

- One of the very weak properties of wood
- Shrinkage cracks often occur at the ends of beams in the zone of maximum shear stress
- Direct compression transfer of loads in the end zones reduces the total shear force to be carried.

Shear design of glulam beams

A simple approach for beams where the volume < 2.0 m³:

 $V_r = \varphi F_v 2/3 A K_N$

where $\varphi = 0$

and

φ = 0.9

 $\mathbf{F}_{v} = \mathbf{f}_{v} \left(\mathbf{K}_{D} \mathbf{K}_{H} \mathbf{K}_{Sv} \mathbf{K}_{T} \right)$

K_N = notch factor (see next section)

For larger beams this is usually quite conservative and a more sophisticated approach is used (see clause 6.5.7.3)

$$K_{\rm N} = (1 - d_{\rm n}/d)^2$$

For e > d: K_N = (1 - d_n/d)

For e < d: K_N = 1 - d_ne/[d(d - d_n)]

- For notches on the tension side of supports (sawn lumber)
- In new code: Reaction calculation

$$\mathbf{F}_{r} = \mathbf{\phi} \mathbf{F}_{t} \mathbf{A} \mathbf{K}_{N}$$

$$\mathbf{\phi} = 0.9$$

 $F_t = f_t (K_D K_H K_{St} K_T)$ where $f_t =$ specified reaction force strength = 0.5 MPa for sawn lumber $K_{St} = 1.0$ for dry and 0.7 for wet service conditions A = gross cross-section area $K_N =$ notch factor

Notch factor K_N

Based on Fracture Mechanics theory

$$K_N = \left(0.006 \left(1.6 \left(\frac{1}{\alpha} - 1\right) + \eta^2 \left(\frac{1}{\alpha^3} - 1\right)\right)\right)^{-0.5}$$

$$\alpha = 1 - \left(\frac{d_n}{d}\right) \text{ and } \eta = \frac{e}{d}$$

Bearing failure in a timber beam

- The "soft" property of wood
- Often governs
- Not only compression perpendicular to grain but also tension of the fibres along edges

Critical bearing areas in woodframe construction

Bearing factor K_B

Bearing length or diameter (mm)	Bearing factor K _B		
< 12.5	1.75		
25	1.38		
38	1.25		
50	1.19		
75	1.13		
100	1.10		
> 150	1.0		

Deflections

- A serviceability criterion
 - Avoid damage to cladding etc. ($\Delta \leq L/180$)
 - Avoid vibrations ($\Delta \leq L/360$)
 - Aesthetics ($\Delta \leq L/240$)
- Use <u>unfactored</u> loads
- Typically not part of the code

