Deflections of Beams and Shafts

Deflection and slope are sometimes the limiting factors in beam and shaft design.

Methods for solving deflection and problems include:

- Integration Methods ***
- Discontinuity (Singularity) Functions
- Moment-Area Method -??
- Energy Methods (Castigliano's Theorem)
- Superposition Methods ***
- · Charts & tables *

```
Scanning tunnel microscope

STM

AFM

FFM

MFM

Scanning

probe

microscopes

MFM
```

Schematic drawing of a cantilever used in a typical scanning probe microscope

Source: Overney, 1995

Visualization of Elastic Curves

It is useful to visualize elastic curves for beams subjected to known loads. /vertical The schematics below can help you determine whether or not forces (V), moments (M), displacements (Δ), or slopes (θ) are zero for various types of supports. moment transferrer 5 1 to wall M = 0 Displacements $\Delta = 0$ V=O $\theta = 0$ M = 0Zero & $\Delta = 0$ Roller Fixed end moments 2 6 $\Delta \neq 0$ zero if $\Delta = 0$ V = 0p in or soller 0 = 0 M = 0M = 0is at end of Free end Pin 7 3 shaft $\Delta \neq 0$ 070 V70 M = 0 $V \neq 0$ Internal pin or hinge $\Delta = 0$ $\theta \neq 0$ Roller 4 Boundary Conditions $\Delta = 0$ Pin

Visualization of Elastic Curves (continued)

Using bending moment diagrams together with an understanding of how the supports contribute to deflection and slope, elastic curves can be sketched as shown in the examples below:

v -global vertical coordinate Moment Curvature Relationship M X X X E is normal strain at a distance y from N.A.: $\mathcal{E} = \frac{ds' - ds}{ds} = \frac{(P - \gamma)dS - Pd\theta}{Pd\theta}$ 0' Center ot Curvature dx does not $\xi = \chi - \frac{y}{\rho} - \chi ; \quad \xi = -\frac{y}{\rho}$ change after deformation. It $\left| \frac{1}{\rho} \right| = -\frac{\varepsilon}{\gamma} \quad \text{where } \frac{1}{\rho} \text{ is called "curvature"}$ is along the N.A. $dx = ds = \rho d\theta$ de for a linear-clastic, homogeneous material $ds' = (P - Y) d\theta$ $E = \frac{O}{\mathcal{E}} \quad \text{or} \quad \mathcal{E} = \frac{O}{E}$ Flexure eq: $O = -\frac{My}{T} \quad \frac{-\mathcal{E}}{Y} = \frac{M}{ET}$ ds' EI is "flexural rigidity" Y or "stiffness" N. A. (Y. J. dx) M $\frac{1}{e} = \frac{M}{EI}$ before After É is elastic modulus

Slope and Displacement by Integration

The coordinates of the elastic curve for a beam or shaft can be determined using an equation that expresses v as a function of x, where v is the vertical deflection and x is the horizontal position where that deflection occurs.

To begin, start with an equation for the curvature $(1/\rho)$ expressed in terms of *v* and *x*. The derivation of this equation can be found in most Calculus books:

$$\frac{1}{\rho} = \frac{d^2 v / dx^2}{\left[1 + (dv / dx)^2\right]^{3/2}}$$
$$\frac{d^2 v / dx^2}{\left[1 + (dv / dx)^2\right]^{3/2}} = \frac{M}{EI}$$

since most engineering designs <u>limit</u> deflections, the slope $\frac{dv}{d\chi}$ will be small, and $\left(\frac{dv}{d\chi}\right)^2$ is really small.

 $\frac{d^2 v}{d \chi^2} = \frac{M}{EI}$ $M(\chi) = EI \frac{d^2 v}{d \chi^2}$

To draw shear and bending moment diagrams for beams, the following equations could be used: shear, function of x $- w(x) = \frac{dV}{dx}$ $V(x) = \frac{dM}{dx}$ $v(x) = \frac{dM}{dx}$ $v(x) = \frac{dM}{dx}$ (distributed load acting down Using the simplified equation for curvature, the following equations can be derived for the moment M(x), shear V(x), and distributed load w(x):

$$M(x) = EI \frac{d}{dx^{2}}$$

$$V(x) = \frac{d(m(x))}{dx} = \frac{d}{dx} \left(EI \frac{d^{2}v}{dx^{2}} \right) = EI \frac{d^{3}v}{dx^{3}}$$

$$-w(x) = \frac{d(v(x))}{dx} = \frac{d}{dx} \left(EI \frac{d^{3}v}{dx^{3}} \right) = EI \frac{d^{4}v}{dx^{4}}$$

12-3. Determine the equation of the elastic curve for the beam using the *x* coordinate that is valid for $0 \le x \le L/2$. Specify the slope at *A* and the beam's maximum $\frac{f}{2}$ deflection. *EI* is constant.

♪V

A

Dimensions and Geometric Characteristics of Standard Structural Shapes such as I-Beams, Channel Sections, & Angle Bars – see Appendix B

W-shapes: I-Beams

C-shapes: channel sections

L-shapes: angle bars

Elastic Curves, Slope & Deflection Equations for Beams – see Appendix C

Superposition can be used to solve more complicated slope and deflection problems using equations shown in Appendix C for typical simply-supported and fixed beams under a range of loading conditions.

Other references such as the AISC Handbook and Roark's Theories of Stress and Strain provide equations for a wider range of beams.

