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Introduction 

• In discussing the analysis and design of 
various structures in the previous chapters, we 
had two primary concerns:  
– the strength of the structure, i.e. its ability to 

support a specified load without experiencing 
excessive stresses;  

– the ability of the structure to support a specified 
load without undergoing unacceptable 
deformations. 

 



Introduction 

– Now we shall be concerned with stability of the 
structure,  

•  with its ability to support a given load without 
experiencing a sudden change in its configuration.  

– Our discussion will relate mainly to columns,  

•  the analysis and design of vertical prismatic members 
supporting axial loads.  

 



Introduction 

• Structures may fail in a variety of ways, 
depending on the : 

– Type of structure 

– Conditions of support 

– Kinds of loads 

– Material used 



Introduction 

• Failure is prevented by designing structures so 
that the maximum stresses and maximum 
displacements remain within tolerable limits. 

• Strength and stiffness are important factors in 
design as we have already discussed 

• Another type of failure is buckling 



Introduction 

• If a beam element is 
under a compressive load 
and its length is an order 
of magnitude larger than 
either of its other 
dimensions such a beam 
is called a columns.  

• Due to its size its axial 
displacement is going to 
be very small compared to 
its lateral deflection called 
buckling.  



Introduction 

• Quite often the buckling of column can lead to 
sudden and dramatic failure. And as a result, special 
attention must be given to design of column so that 
they can safely support the loads.  

• Buckling is not limited to columns. 
– Can occur in many kinds of structures 

– Can take many forms 

– Step on empty aluminum can 

– Major cause of failure in structures 



Buckling & Stability 

• Consider the figure 

• Hypothetical structure 

• Two rigid bars joined by a pin the 
center, held in a vertical position by a 
spring 

• Is analogous to fig13-1 because both 
have simple supports at the end and 
are compressed by an axial load P. 



Buckling & Stability 

• Elasticity of the buckling model 
is concentrated in the spring ( 
real model can bend 
throughout its length 

• Two bars are perfectly aligned 

• Load P is along the vertical axis 

• Spring is unstressed 

• Bar is in direct compression 



Buckling & Stability 

• Structure is disturbed by an external 
force that causes point A to move a 
small distance laterally. 

• Rigid bars rotate through small angles 
 

• Force develops in the spring 

• Direction of the force tends to return 
the structure to its original straight 
position, called the Restoring Force. 



Buckling & Stability 

• At the same time, the tendency of the axial 
compressive force is to increase the lateral 
displacement. 

• These two actions have opposite effects 

– Restoring force tends to decrease displacement 

– Axial force tends to increase displacement. 



Buckling & Stability 

• Now remove the disturbing force. 

• If P is small, the restoring force will dominate over 
the action of the axial force and the structure will 
return to its initial straight position 
– Structure is called Stable 

• If P is large, the lateral displacement of A will 
increase and the bars will rotate through larger and 
larger angles until the structure collapses 
– Structure is unstable and fails by lateral buckling 



Critical Load 

• Transition between stable and 
unstable  conditions occurs at a 
value of the axial force called the 
Critical Load Pcr. 

• Find the critical load by considering 
the structure in the disturbed 
position and consider equilibrium 

• Consider the entire structure as a 
FBD and sum the forces in the x 
direction 



Critical Load 

• Next, consider the upper bar as a 
free body 

– Subjected to axial forces P and force F 
in the spring 

– Force is equal to the stiffness k times 
the displacement ∆, F = k∆ 

– Since  is small, the lateral 
displacement of point A is L/2 

– Applying equilibrium and solving for P: 
Pcr=kL/4 



Critical Load 

• Which is the critical load 

– At this value the structure is in equilibrium regardless 
of the magnitude of the angle (provided it stays small) 

– Critical load is the only load for which the structure will 
be in equilibrium in the disturbed position 

– At this value, restoring effect of the moment in the 
spring matches the buckling effect of the axial load 

– Represents the boundary between the stable and 
unstable conditions. 



Critical Load 

• If the axial load is less than Pcr the effect of 
the moment in the spring dominates and 
the structure returns to the vertical 
position after a small disturbance – stable 
condition. 

• If the axial load is larger than Pcr the effect 
of the axial force predominates and the 
structure buckles – unstable condition. 



Critical Load 

• The boundary between 
stability and instability is 
called neutral equilibrium. 

• The critical point, after 
which the deflections of 
the member become very 
large, is called the 
"bifurcation point" of the 
system  

 



Critical Load 

• This is analogous to a ball placed on a smooth 
surface 
– If the surface is concave (inside of a dish) the equilibrium is 

stable and the ball always returns to the low point when 
disturbed 

– If the surface is convex (like a dome) the ball can 
theoretically be in equilibrium on the top surface, but the 
equilibrium is unstable and the ball rolls away 

– If the surface is perfectly flat, the ball is in neutral 
equilibrium and stays where placed. 



Critical Load 



Critical Load 

• In looking at columns under this type of 
loading we are only going to look at three 
different types of supports:  

– pin-supported,  

– doubly built-in and  

– cantilever.  



Pin Supported Column 

• Due to imperfections no column is 
really straight.  

• At some critical compressive load it 
will buckle.  

• To determine the maximum 
compressive load (Buckling Load) we 
assume that buckling has occurred  



Pin Supported Column 

• Looking at the FBD of the top of 
the beam 

• Equating moments at the cut end; 
M(x)=-Pv 

• Since the deflection of the beam is 
related with its bending moment 
distribution 
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Pin Supported Column 

• This equation simplifies to: 

• P/EI is constant. 

• This expression is in the form of a second order 
differential equation of the type 

• Where 

• The solution of this equation is: 

 

– A and B are found using boundary conditions 
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Pin Supported Column 

• Boundary Conditions 
– At x=0, v=0, therefore A=0 

– At x=L, v=0, then 0=Bsin(L) 

• If B=0, no bending moment exists, so the only 
logical solution is for sin(L)=0 and the only 
way that can happen is if L=n 

• Where n=1,2,3, 



Pin Supported Column 

• But since 

 

• Then we get that buckling load is: 
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Pin Supported Column 

• The values of n defines the buckling mode 
shapes 
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Critical Buckling Load 

• Since P1<P2<P3, the column buckles at P1 and 
never gets to P2 or P3 unless bracing is place at 
the points where v=0 to prevent buckling at 
lower loads. 

• The critical load for a pin ended column is 
then: 

 

• Which is called the Euler Buckling Load 
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Built-In Column 

• The critical load for other column can be 
expressed in terms of the critical buckling 
load for a pin-ended column. 

• From symmetry conditions at the point of 
inflection occurs at ¼ L. 

• Therefore the middle half of the column 
can be taken out and treated as a pin-
ended column of length LE=L/2 

• Yielding: 
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Cantilever Column 

• This is similar to the previous case. 

• The span is equivalent to ½ of the Euler span LE 
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Therefore: 























freefixedL

fixedfixedL

pinfixedL

pinpinL

Le

2

5.0

7.0



Note on Moment of Inertia 

• Since Pcrit is proportional to I, the column will 
buckle in the direction corresponding to the 
minimum value of I 
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Critical Column Stress 

• A column can either fail due to the material 
yielding, or because the column buckles, it is 
of interest to the engineer to determine when 
this point of transition occurs.  

• Consider the Euler buckling equation  
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Critical Column Stress 

• Because of the large deflection caused by 
buckling, the least moment of inertia I can be 
expressed as 

• where: A is the cross sectional area and r is the 
radius of gyration of the cross sectional area, 
i.e. .  

• Note that the smallest radius of gyration of the 
column, i.e. the least moment of inertia I 
should be taken in order to find the critical 
stress.   
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Critical Column Stress 

• Dividing the buckling equation by A, gives:  

 

• where:  

– E is the compressive stress in the column and 
must not exceed the yield stress Y  of the 
material, i.e. E<Y,  

– L / r is called the slenderness ratio, it is a 
measure of the column's flexibility.  
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Critical Buckling Load 

• Pcrit is the critical or maximum axial load on 
the column just before it begins to buckle 

• E youngs modulus of elasticity 

• I least moment of inertia for the columns 
cross sectional area. 

• L unsupported length of the column whose 
ends are pinned. 












