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Introduction

* |n discussing the analysis and design of
various structures in the previous chapters, we
had two primary concerns:

— the strength of the structure, i.e. its ability to

support a specified load without experiencing
excessive stresses;

— the ability of the structure to support a specified
load without undergoing unacceptable
deformations.



Introduction

— Now we shall be concerned with stability of the
structure,

e with its ability to support a given load without
experiencing a sudden change in its configuration.

— Our discussion will relate mainly to columns,

* the analysis and design of vertical prismatic members
supporting axial loads.



Introduction

e Structures may fail in a variety of ways,
depending on the :

— Type of structure

— Conditions of support
— Kinds of loads

— Material used



Introduction

* Failure is prevented by designing structures so
that the maximum stresses and maximum
displacements remain within tolerable limits.

e Strength and stiffness are important factors in
design as we have already discussed

* Another type of failure is buckling



Introduction

If a beam element is
under a compressive load
and its length is an order
of magnitude larger than
either of its other
dimensions such a beam
is called a columns.

Due to its size its axial
displacement is going to
be very small compared to
its lateral deflection called
buckling.
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Introduction

e Quite often the buckling of column can lead to
sudden and dramatic failure. And as a result, special
attention must be given to design of column so that
they can safely support the loads.

* Buckling is not limited to columns.
— Can occur in many kinds of structures
— Can take many forms

— Step on empty aluminum can
— Major cause of failure in structures




Buckling & Stability

Consider the figure

Hypothetical structure

Two rigid bars joined by a pin the
center, held in a vertical position by a
spring

Is analogous to figl3-1 because both

have simple supports at the end and
are compressed by an axial load P.

p it

N =M



Buckling & Stability

1 * Elasticity of the buckling model
H is concentrated in the spring (

T real model can bend
L throughout its length

., * Two bars are perfectly aligned
A &M  Load P is along the vertical axis
e Spring is unstressed

* Barisin direct compression




Buckling & Stability

Structure is disturbed by an exterr
force that causes point A to move
small distance laterally.

Rigid bars rotate through small an
0

Force develops in the spring

Direction of the force tends to ret:
the structure to its original straigh
position, called the Restoring Forc




Buckling & Stability

* At the same time, the tendency of the axial
compressive force is to increase the lateral

displacement.
* These two actions have opposite effects

— Restoring force tends to decrease displacement
— Axial force tends to increase displacement.



Buckling & Stability

* Now remove the disturbing force.

e If Pis small, the restoring force will dominate over
the action of the axial force and the structure will
return to its initial straight position

— Structure is called Stable
* If Pislarge, the lateral displacement of A will

increase and the bars will rotate through larger and
larger angles until the structure collapses

— Structure is unstable and fails by lateral buckling



Critical Load

 Transition between stable and Ptaﬁle
|

unstable conditions occurs at
value of the axial force called 1
Critical Load P_.

* Find the critical load by consid
the structure in the disturbed
position and consider equilibri

e Consider the entire structure «
FBD and sum the forces in the
direction Ptan®




Critical Load

* Next, consider the upper bar a Pt_aﬁle

free body

— Subjected to axial forces P and f¢
in the spring

— Force is equal to the stiffness k t
the displacement A, F = kA

— Since 0 is small, the lateral
displacement of point A is OL/2

— Applying equilibrium and solving
P_=kL/4 Ptan6



Critical Load

e Which is the critical load

— At this value the structure is in equilibrium regardless
of the magnitude of the angle (provided it stays small)

— Critical load is the only load for which the structure will
be in equilibrium in the disturbed position

— At this value, restoring effect of the moment in the
spring matches the buckling effect of the axial load

— Represents the boundary between the stable and
unstable conditions.



Critical Load

* If the axial load is less than P_. the effect of
the moment in the spring dominates and
the structure returns to the vertical
position after a small disturbance — stable
condition.

* If the axial load is larger than P_, the effect
of the axial force predominates and the
structure buckles — unstable condition.



Critical Load

 The boundary between
stability and instability is
called neutral equilibrium.
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Critical Load

* This is analogous to a ball placed on a smooth
surface

— If the surface is concave (inside of a dish) the equilibrium is
stable and the ball always returns to the low point when
disturbed

— If the surface is convex (like a dome) the ball can
theoretically be in equilibrium on the top surface, but the
equilibrium is unstable and the ball rolls away

— If the surface is perfectly flat, the ball is in neutral
equilibrium and stays where placed.



Critical Load
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Figure 1 The three states of equilibrium



Critical Load

* In looking at columns under this type of
loading we are only going to look at three
different types of supports:

— pin-supported,
— doubly built-in and
— cantilever.



Pin Supported Column

* Due to imperfections no column i
really straight.

* At some critical compressive load
will buckle.

* To determine the maximum
compressive load (Buckling Load)
assume that buckling has occurre




Pin Supported Column

* Looking at the FBD of the top ¢ P
the beam l

 Equating moments at the cut e
M(x)=-Pv

* Since the deflection of the beal x
related with its bending mome

distribution ${M
d*v v

EIW:—PV P




Pin Supported Column

2
This equation simplifies to: ﬂ+ £ v=0
. dx*  \EI

P/El is constant.
This expression is in the form of a second order

. . . 2
differential equation of the type %HZ%ZO
Where o'=— .

EI

The solution of this equation is:
v = Acos(ax) + Bsin(ax)

— A and B are found using boundary conditions



Pin Supported Column

* Boundary Conditions
— At x=0, v=0, therefore A=0
— At x=L, v=0, then 0=Bsin(alL)
e |f B=0, no bending moment exists, so the only

logical solution is for sin(oL)=0 and the only
way that can happen is if al=nm

* Where n=1,2,3,



Pin Supported Column

, P ni ?
o ———=| —
El L

* Then we get that buckling load is:

e But since

, T2 El

P=n 7




Pin Supported Column

* The values of n defines the buckling mode
shapes

M n’El Py

First mode of buckling P, =

2
P, Py
2
Second mode of buckling P, = 4m 2EI
L
P, P,
On’EIl

Third mode of buckling B = 2



Critical Buckling Load

* Since P,<P,<P,, the column buckles at P, and
never gets to P, or P, unless bracing is place at
the points where v=0 to prevent buckling at
lower loads.

* The critical load for a pin ended column is
then:

2
a El
P Crit —

 Which is called the EuIeﬁBucinng Load



Built-In Column

The critical load for other column ca
expressed in terms of the critical bu
load for a pin-ended column.

From symmetry conditions at the pc
inflection occurs at % L.

Therefore the middle half of the coli
can be taken out and treated as a pil
ended column of length L.=L/2

Yielding:

A’ El
P Crit — L2

P
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Fixed ends



Cantilever Column

* This is similar to the previous case.
* The span is equivalent to 2 of the Euler span L,
7’El  m’El

L. 4L

P Crit —




Therefore:

(L pin — pin
0.7L  fixed — pin
0.5L fixed — fixed
2L fixed — free




Note on Moment of Inertia

* Since P_., is proportional to I, the column will
buckle in the direction corresponding to the
minimum value of |

P :
y 77/| P
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Critical Column Stress

* A column can either fail due to the material
vielding, or because the column buckles, it is
of interest to the engineer to determine when
this point of transition occurs.

* Consider the Euler buckling equation

n’ El
Py ==
L




Critical Column Stress

* Because of the large deflection caused by
buckling, the least moment of inertia / can be
expressed as ] = Ar?

 where: A is the cross sectional area and r is the
radius of gyration of the cross sectional area,
i.e. . = I/A

* Note that the smallest radius of gyration of the
column, i.e. the least moment of inertia /
should be taken in order to find the critical
stress.



Critical Column Stress

* Dividing the buckling equation by A, gives:

P °E
GE: E: n

2
* where: 4 (L/r)
— o is the compressive stress in the column and

must not exceed the yield stress ¢, of the
material, i.e. 6.<c,,

—L / r is called the slenderness ratio, it is a
measure of the column'’s flexibility.



Critical Buckling Load

P... is the critical or maximum axial load on
the column just before it begins to buckle

E youngs modulus of elasticity

| least moment of inertia for the columns
cross sectional area.

L unsupported length of the column whose
ends are pinned.



EXAMPLE 13-2

The A-36 steel W 8 X 31 member shown in Fig. 13-10 is to be used as a
pin-connected column. Determine the largest axial load it can support
before it either begins to buckle or the steel yields.

12 ft

Fig. 13-10



SOLUTION

From the table in Appendix B, the column’s cross-sectional area and
moments of inertia are A = 9.13 in®, I, = 110 in®*, and =211 in®. By
inspection, buckling will occur about the y—y axis. Why? Applying Eq.
13-5, we have

_ mEI _ 7°[29(10°) kip/in*](37.1 in®)

P.,= = 512 ki
=2 [12 ft(12 in/ft)] i
When fully loaded, the average compressive stress in the column is
B oi2 kip :
— — = .1 k
Za i o

Since this stress exceeds the yield stress (36 ksi), the load P is determined
from simple compression:

36 ksi =

013 i P =329 kip Ans.

In actual practice, a factor of safety would be placed on this loading.

12 ft

Fig. 13-10



EXAMPLE 13-3

A W 6 X 15 steel column is 24 ft long and is fixed at its ends as shown
in Fig. 13-13a. Its load-carrying capacity is increased by bracing it about
the y—y (weak) axis using struts that are assumed to be pin-connected
to its midheight. Determine the load it can support so that the column
does not buckle nor the material exceed the yield stress. Take E, =
29(10%) ksi and oy = 60 ksi.

< (a)



12t |[[aC

I

x—x axis buckling

(b)

SOLUTION

The buckling behavior of the column will be different about the x and y
axes due to the bracing. The buckled shape for each of these cases is
shown in Figs. 13-13b and 13-13c. From Fig. 13-13b, the effective length
for buckling about the x—x axis is (KL),=0.524 ft)=12 ft=
144 in., and from Fig. 13-13c, for buckling about the y—y axis, (KL), =
0.7(24 ft/2) = 8.40 ft = 100.8 in. The moments of inertia for a W 6 X 15
are determined from the table in Appendix B. We have I, = 29.1 in®,
I, = 9.32 in*,
Applying Eq. 13-11, we have

mEl,  7[29(10°) ksi]29.1 in*
(KL): (144 in.)?

wEl,  7[29(10°) ksi]9.32 in*
(KL); (100.8 in.)*

(Pep)x = = 401.7 kip (1)

o= =2625kip  (2)



8.40 ft

\
e
\

y—y axis buckling

(c)
Fig. 13-13

By comparison, buckling will occur about the y—y axis.
The area of the cross section is 4.43 in’, so the average compressive
stress in the column will be

P, 2625kip ,
CETES e

Since this stress is less than the yield stress, buckling will occur
before the material yields. Thus,

P =263 kip Ans.

Note: From Eq. 13-11 it can be seen that buckling will always occur
about the column axis having the largest slenderness ratio, since a large
slenderness ratio will give a small critical load. Thus, using the data for
the radius of gyration from the table in Appendix B, we have

KL 144 in.

_— — = _2
( r )x 2.56 in. 2
KL\ _ 1008in. _

( y )y_ 1.46 in. a2

Hence, y—y axis buckling will occur, which is the same conclusion reached
by comparing Eqgs. 1 and 2.



